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1.	 Introduction 

Steel is one of the most researched material due to its economic 
impact in most countries. This role is enormous when one 
considers the numerous steel applications in the daily life. Among 
these applications is the use of steel in transport as railway track. To 
date, the chemical, mechanical and corrosion properties of the steel 
as railway track are well established and minimum performance 
requirements are well known. Thus, every time a new composition 
is developed, laboratory characterisations and field trials are 
needed to assess the properties of the new steel candidate against 
those of standard steel compositions with known properties and 
performance. 

Generally the railway steel is characterised by the microstructure, 
tensile, hardness and wear resistance. In addition to the property 
dependence on the phase present in the microstructure, the hardness 
also depends on the grain size. 

Characterisation of rail steel is also a function of the targeted 
properties. Asitha et al.1 have characterised the head-hardened 
rail steel in terms of cyclic plasticity response and microstructure 
for improved material modelling to confirm the impact of the rail 
shape on material inhomogeneity which impact, in turn, the rolling 
contact fatigue behaviour. In another study, Ma et al2 have shown 
the dependence of rail wear on the different slip ratio conditions 
during the wheel/rail contact fatigue. Other studies are focusing 
on the impact of corrosion properties on the wear and fatigue 
performance of rail steel.3-4

The need for corrosion-resistant steel has led to the painting of rail 
steel to prolong its life, a solution which is not practical for rail 
steel. In this regard, weathering or corten steels were developed to 
eliminate the need for coating8 and significant research activities 
are focused in this area.4,7

Railway steels are generally pearlitic. The rail head surface operates 
under abrasive conditions supplied by the railway wheel. Research 
has shown that by maximizing the hardness of the pearlitic 
structure, the wear rate is minimised in both laboratory and field 
tests.9,10 It was also found that the wear resistance increases with 
decreasing inter-lamellar spacing.10

Available data in the literature indicate that in the past 50 years the 
railways and rail manufacturers have improved rail performance 
by increasing hardness from 248 HB to more than 400 HB. The 
historical path followed in the development of premium grade 
(high-performance) steel metallurgy is illustrated in Figure 1.11

The major alloying elements in steel is carbon (C). Carbon increases 
the volume fraction of hard phases in steel and, consequently, the 
hardness. It also influences the mechanical properties through the 
volume fraction of cementite and the content of pearlite. Alloying 
additions such as Si, Cr, Ni and Mn are added to increase the 
hardenability, i.e. these alloying elements delay the formation of 
softer phases.12 Manganese, for instance, influences the temperature 
decrease of the eutectoid reaction and the fineness of pearlite 
lamellae, that is, the reduction in the inter-lamellar distance.13
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In this work, metallurgical characterisation and mechanical testing 
were performed on two (2) railway track steel alloys. 

2.	 Experimental procedure

2.1	 Visual examination

All the railway track samples were visually examined for surface 
defects and weighed to determine their mass. The dimensions were 
measured with a digital calliper to confirm their sizes against the 
reference.12

2.2	 Chemical analysis

Spark emission spectrometry was performed on the cross sectioned 
railway track samples according to ASTM E350-18.13 The samples 
were ground to remove rust, scale and other contaminants to reveal 
the metallic surface for analysis. The spectrometer analysis was 
programmed for low alloy steel and was calibrated using low 
carbon steel standard. Three spark analyses were performed on 
each sample and the results were averaged.

2.3	 Microstructural analysis

Macro-etching, also referred to as deep etching, was performed 
on the traverse section of the two railway track samples 
according ASTM E340.14 A macrostructural examination at low 
magnifications was performed to reveal the existence of any 
defects such as: cracks, pipe, centre voids, centre unsoundness, 
pinholes, porosity, white band, chill structure, dendritic structure, 
inclusions, hydrogen flakes, segregation, banding, grain size, and 
other discontinuities or defects such as laps and seams.

A 25mm cross-section was removed from each samples for 
microstructural analysis using an optical microscope. The samples 
were ground and polished according to ASTM E3 -11(2017).15 The 
cross-sections were polished to 1um finish and etched with 2% 
Nital to study their microstructures. The microstructural analysis 
was performed near the rail head surface (point A) and towards the 
rail web at point B as shown in Figure 2. 

Samples were removed near the rail head surface (position A 
in Figure 2) to study the inter-lamellar spacing using scanning 
electron microscopy. These samples were mounted and polished to 
analyse for pearlite inter-lamellar spacing.

2.4	 Hardness testing 

Rockwell C hardness measurements were performed at selected 
positions through the cross-sections of the two samples as per 
ASTM E18-19.16 The hardness measurements were done at 5mm 
intervals according to schematic image in Figure 3. Figure 3 is 
divided into 3 sections, C, L, R, where C represents the hardness 
measurements taken in the centre of the cross-sections, from the 
rail head surface until 100mm depth, into the rail web. L represents 
the hardness taken to the left and R the hardness taken to the right.

2.5	 Tensile testing

Tensile specimen were produced on each railway track sample 
according to ASTM E8-04.17 The tests were carried out at 2mm/
minute until 2% elongation where the rate was increased to 5mm/
minute. The yield stress of the specimens were measured from 0.2% 
offset yield stress. The elongation values were measured using an 
extensometer and from measuring the initial and final gauge length 
using a digital calliper to calculate the elongation %.

2.6	 Charpy impact test 

Charpy impact specimens were tested at room temperature to 
assess the dynamic fracture behaviour of the railway steels. Charpy 
U-notch impact specimens were produced according to ASTM-
E23A.18 However for the sake of this test, the U-notch was reduced 
from 5mm to 2 mm.19 The notch was made on the surface closest 
to the rail head surface.

 

Figure 1: Evolution of rail steel metallurgies, hardness levels, and 
failure modes in the past 50 years11

Figure 2: Railway schematic indicating positions where 
microstructural analysis was done
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3.	 Results and discussion

3.1	 Dimensional measurements of the railway 
tracks

The weight of each railway track sample was measured to be able to 
classify the type of the rail track. The dimensions and weight of the 
samples are summarised in Table 1, indicating that the dimensions 
are in agreement with the 60kg/m rail track profile.12

3.2	 Chemical analysis

The compositions of the railway samples are presented in Table 2. 

The carbon content indicates that the railways track samples were 
medium carbon steel as shown with a dotted red line in Figure 1. 
The chemical composition of MS02 is different from that of MS03. 

MS02 showing lower silicon (Si), chromium (Cr) and nickel 
contents as compared to MS03. MS02 and a higher manganese 
(Mn) content. MS03 can be classified as medium carbon-high 
chromium steel. Table 2 gives the results of the spark emission 
spectrometry.

3.3	 Microstructural analysis

The microstructures were studies near the rail head surface and 
towards the rail web, as indicated by position A and B in Figure 
3. The micrographs are given at different magnifications, low 
magnification in Figure 4 and high magnification in Figure 5. 
Details of the microstructure are better seen at high magnification 
(Figure 5), showing the fineness and coarseness at the two different 
positions.

Table 1: Weights and Dimensions of the as-received railway track samples supplied for testing

Parameter
Sample ID

MS02 MS03
Dimension  (mm) Weight (kg) Dimension  (mm) Weight (kg)

18.96 18.04
Total Length 309.06 304.35
Rail Edge 71.74 72.34
Rail Head 73.29 74.08
Rail Web 17.34 17.06
Rail Bottom 149.88 149.87
Rail Height 171.78 172.04

Table 2: Chemical composition of the railway track samples

Sample Identity Element (wt %)

C Si Mn P S Cr Ni Ti Al Cu V

MS02 0.31 0.25 0.89 0.024 0.006 0.02 0.12 0.0025 0.0056 0.005 0.016

MS03 0.35 0.43 0.39 0.013 0.011 0.72 0.23 0.0038 0.0037 0.030 0.002
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The microstructures of MS03 is fully pearlitic as shown in Figures 
6 and 7. In both cases, visually, the grains near the rail head surface 
(position A of Figure 3) were finer than those at centre (position B), 
see Figures 6 and 7.

3.4	 Scanning Electron Microscopy (SEM)

With combined efforts of Gensamer et al, and Saltykov, it was 
possible to relate the mean linear intercept (Lmean) to the mean 
true spacing (λ0), it was found that Lmean = 2 λ0.14-16 A line (L) of 
known length was drawn across a number of pearlite lamellae 
to determine inter-lamellar spacing. Figure 8 is an illustration of 
different possible measurements in a perfect lamella. The line (L) 
was divided by the number of lamellae intercepts to get the mean 
lineal intercept (Lmean), as shown in Figure 9. Table 3 summarises 

the mean inter-lamellar spacing results, it was found that MS03 has 
finer inter-lamellar spacing than MS02.

Table 3: Mean inter-lamellar spacing

Property Symbol
Values (nm)

MS02 MS03

Mean lineal intercept Lmean 277.9 87.3

Inter-lamellar spacing 
(mean method) λ0 140.0 43.7

3.5	 Hardness

The Rockwell hardness values of measurements performed on L, C 
and R of the cross-sections (Figure 4), were averaged and are given 
in Table 4 and graphically presented in Figure 10. Table 4 indicates 

7 
 

Figure 4. Microstructures of MS02 at 100X (low) magnification (a) near the rail head surface (Position A) 141 

and (b) at the centre (Position B) 142 

  143 
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Figure 7. Microstructures of MS03 at high magnification (a) near the rail head surface (Position A) and 150 
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Figure 9. Scanning electron microscopy (SEM) images of MS02 and MS03 rail showing the measurement 164 

of the inter-lamellar spacing using the line intercept method. 165 
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Figure 9: Scanning electron microscopy (SEM) images of MS02 and MS03 rail showing the measurement of the inter-lamellar spacing 
using the line intercept method
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that the hardness values of MS02 are lower than that of MS03. This 
is in agreement with the microstructure observed for MS02 where 
a ferritic phase was observed on grain boundaries.  The hardness 
values of MS02 closer to the rail head surface are around 30HRC. 
The hardness values of MS03 closer to the rail head surface are 
higher, about 45HRC and reduces slightly as the distance from the 
rail head is increased. 

3.6	 Tensile testing

The tensile strength and elongation of the specimens were 
measured at room temperature and the results are shown in Table 5 
and the engineering stress vs engineering strain curves were plotted 
in Figure 11 where the test results of MS02-3 and MS03-2 were 
selected for railway sample MS02 and MS03 respectively. The 

Table 4: Rockwell C Hardness Results

Depth from the 
head surface 
(mm)

MS02 MS03

L C R L C R

5 26.1 30.2 31.0 28.8 28.2 29.1 30.1 44.6 44.9 44.8 45.1 45.9 46.2 46.7
10 29.1 29.9 29.4 28.8 30.1 29.5 29.0 45.3 46.0 46.3 46.2 46.0 46.8 45.8
15 31.2 31.2 30.8 31.4 31.1 30.7 30.3 44.5 45.6 44.7 44.9 45.0 46.1 46.1
20 30.3 30.1 30.3 30.7 31.0 30.7 31.0 42.4 43.5 44.5 42.7 43.6 44.2 45.0
25 30.0 31.1 30.1 30.7 30.0 29.6 29.6 40.6 42.6 43.2 41.9 41.8 43.4 44.9
30 28.4 30.9 30.0 30.5 30.6 29.2 29.7 39.4 42.1 41.3 40.0 40.4 42.4 45.0
35 28.2 29.2 29.2 27.5 31.2 29.8 29.4 39.4 40.8 42.0 38.7 40.3 41.9 43.7
40 - - - 30.5 - - - - - - 38.3 - - -
45 - - - 27.8 - - - - - - 38.2 - - -
50 - - - 27.9 - - - - - - 38.2 - - -
55 - - - 28.4 - - - - - - 36.7 - - -
60 - - - 28.5 - - - - - - 36.9 - - -

Table 5: Tensile Properties 

Specimen Identity Thickness mm (T0)
Yield stress  (Offset 0.2 %)  

(MPa)
Maximum Tensile Stress 

(MPa)
Measured 

Elongation,%
MS02-1 6.35 585.3 955.3 18.22
MS02-2 6.42 509.2 952.4 18.52
MS02-3 6.37 513.8 969.5 17.36
MS03-1 6.37 985.1 1448.7 16.96
MS03-2 6.38 985.0 1444.5 16.72
MS03-3 6.36 983.8 1476.3 17.56
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small darker grey shows ductile fracture. All the samples show both grey colours on their fracture 208 

surfaces. 209 

Table 6. Charpy Impact test results at room temperature 210 

Charpy Impact test Energy, J 
MS02 MS03 

Test 1 16.0 17.4 
Test 2 16.7 12.4 
Test 3 12.4 19.9 

Average 16.3 18.6 
Standard Deviation 2.31 3.81 
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Figure 12. Macro photograph images of representative broken Charpy U-notch (2 mm) specimens for 213 

the rail samples showing a mixture of ductile and brittle failure mode 214 
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x-axis was plotted from the measured extensometer values during 
the test. The measured elongation values are shown in Table 5. The 
difference arises from the possible slipping of the extensometer 
that usually occurs during testing and the interface between the 
two fractures that is included in the measurement. MS03 shows 
superior tensile properties in terms of yield strength and maximum 
tensile strength.

3.7	 Charpy impact test

Charpy impact test results are shown in Table 6. Three tests were 
conducted on both samples and two successful tests were averaged. 
Given the standard deviation of the measurement, the impact 
energy of MS03 was found to be similar to that of MS02, indicating 
the same toughness for MSO2 and MS03. One specimen out of 
each rail track showed lower impact value of 12J.

Figure 12 shows the macro photograph images of representative 
broken Charpy U-notch (2 mm) specimens of all the tested 
specimen. The large shiny grey region indicates a brittle fracture 
whereas the small darker grey shows ductile fracture. All the 
samples show both grey colours on their fracture surfaces.

4.	 Conclusion

The following conclusions drawn are based on the assessment of 
the supplied two railway track samples:

Railway Track Sample MS02

•	 The sample showed high temperature scaling and there was no 
apparent surface defects.

•	 The railway track can be classified as a medium carbon steel - 
0.31 wt%C, 0.25wt%Si, 0.89wt%Mn and 0.02wt%Cr.

•	 The grain size is coarser than that of MS03 and their 
microstructures comprise of pearlite and grain boundary ferrite.

•	 Position A near the rail head surface, visually, show a finer grain 
size than position B towards the rail web.

•	 The Rockwell C hardness values near the rail head surface 
(Position A) are ~30HRC and at position B are ~ 28HRC

•	 The hardness graph does not show a significant gradient, 
generally the hardness revolve around 28 - 30HRC.

•	 The average 0.2% offset yield stress and the ultimate tensile 
strength are 536.1 MPa and 959.1 MPa respectively.

•	 Charpy impact results reported an average of 16.3 J.

Railway Track Sample MS03

•	 No apparent surface defects were observed on the surface

•	 The railway track can be classified as a medium carbon-high 
chromium steel - 0.35 wt%C, 0.43wt%Si, 0.39wt%Mn and 
0.72wt%Cr.

•	 Their microstructures show to be fully pearlitic. Position A 
near the rail head surface show finer grain size than position B 
towards the rail web.

•	 The hardness values near the rail head surface (Position A) are 
~45HRC and at position B are ~ 37HRC.

•	 The hardness graph shows a gradient, the hardness values 
decreased as the distance from the rail head surface was 
increased.

•	 The average 0.2% offset yield stress and the ultimate tensile 
strength are 984.6 MPa and 1456.5 MPa respectively.

•	 Charpy impact results reported an average of 18.6 J.

Overall, the two railway tracks are made of carbon-manganese 
steel (MS02 being medium C and MS03 being medium carbon-
high chrome) with pearlitic microstructure. MS03 with a finer 
grain structure and finer inter-lamellar spacing showed superior 
mechanical properties such as hardness and tensile. However, they 
showed a similar impact toughness.

Future work 

Going forward, the following tests will be conducted:

•	 Wear tests

•	 Fatigue tests

•	 Corrosion tests
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