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1.	 Introduction

Titanium (Ti) is an important engineering material for components 
of various applications ranging from biomedical, aerospace and 
automotive industries,1,2 where the high strength to weight ratio 
and high resistance to corrosion render Ti and its alloys attractive 
and ideal.1 Ti-based intermetallic compounds are promising 
materials for high temperature applications as structural (heat 
and corrosion resistance) or non-structural materials (electronic 
devices, superconductors, etc.).1,3,4,5

Addition of platinum-group metals (PGMs) to several alloys 
produced commercial alloys over the past 4-5 decades for the 
purpose of improving corrosion resistance and other functional 
properties.6,7 Being noble and high temperature stability enables 
PGMs as candidates of choice for high temperature structural 
application. Such materials find use in automotive exhaust system 
and in the manufacturing of high quality glass and glass fibres 
industries as they present high corrosion and oxidation resistance 
[8]. Among the PGMs, ruthenium (Ru) is the cheapest and the 
most reactive, hence it receives most of its application in chemical 
and electronics industries as alloying agent due to its excellent 
catalytic activity.9-11 If added in Ti and other super alloys such as 
those applied in aerospace industry, Ru improved the corrosion 
resistance as well as chemical and electrical stability at higher 
temperatures.12,13 

Common to all PGMs is that they form a B2 (austenite) phase with 
Ti at high temperature and at compositions closer to 50:50 atomic 
percent (at.%). For most PGMs, the B2 phase transforms in a 
diffusionless manner (martensitically) on cooling to orthorhombic or 

tetragonal intermetallic phases.14,15 This martensitic transformation 
is one of the key characteristics for shape memory behaviour, which 
makes them potential materials for high temperature shape memory 
alloys (HTSMAs) if it occurs above 100°C, earmarked for possible 
application in aerospace engines. However, only the phase stability 
of B2 TiRu phase is maintained to room temperature, hence it is 
not listed among PGM-based potential HTSMA materials despite 
its cost benefits.10,11,16 This highly stable B2 phase behaviour is 
also found in other transition metals belonging to group VIII of the 
periodic table of elements.16-19

Upon comprehensive study of the Ti-Ru system, Murray 20 reported 
that the equiatomic TiRu binary compound crystallizes in the B2-
type crystal structure with space group Pm-3m of an ordered body 
centered cubic (BCC) CsCl-type.17,18,21 This B2 phase is a sole 
high temperature intermetallic phase of the TiRu system with 
lattice parameter ranging from 3.06 to 3.076 Å, and it undergoes 
congruent melting at 2130°C. CsCl-type titanium intermetallic 
compounds are currently the most attractive hydrogen storage 
materials.22 Experimental work at MINTEK on the equiatomic 
TiRu alloy found that this B2 phase is brittle.23

The TiPd binary alloys have been widely used in severe, corrosive 
services in the chemical process industries.24 Moreover, there is a 
strong interest in TiPd alloys due to their interesting mechanical 
properties and technological importance for engineering and 
medicine, in particular for the shape memory effect and for the 
property of reversible hydrogen storage.25 However, with the 
market price of Pd metal has been rising over the past few years,11 
which renders Pd selection for such industries unattractive. One 
of the noted reasons hampering the industrial use of PGM based 
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Ti SMAs is the high cost, therefore the focus of this work was 
on finding a relatively cheaper alternative alloy. The systematic 
introduction of up to 25 at.%Pd on the Ru site is aimed to reduce 
the stability of B2 TiRu phase to the point where this B2 phase 
transform to a lower temperature phase such as B19 orthorhombic 
(found in TiAu, TiPd and TiPt), B19’ monoclinic (found in NiTi) 
or L10 tetragonal (found in IrTi) accompanied by shape memory 
effects (SME).14,15,26-28 

This work also observed the atomistic and the ab initio modelling 
work carried out by other researchers while acknowledging 
that there is still limited literature available on equiatomic 
Ti-Ru10,16,20,21,29,30 and ternary Ti-Pd-Ru alloys.29 Diale et al.29 
employed supercell (SC) approach to study the effect of Ru on B2 
Ti50Pd50 with a composition change of 6.25 at. % steps using VASP. 
It is well known that shape memory behaviour is very sensitive to 
composition change,31 hence the current choice of approach that 
allows smaller composition variations.

In this work, a density functional theory based on virtual crystal 
approximation (VCA) solid-solution unit cell approach is used 
to investigate the Pd alloying effect on phase stability and elastic 
properties of the ordered B2 equiatomic TiRu phase with smaller 
composition changes of 2.5 at. % steps28,32 to represent B2 (1-x) 
TiRu-(x) TiPd solid solutions. This approach was carried out with 
the objective to induce martensitic transformation in a stable B2 
TiRu phase.

2.	 Methodology

The calculations were performed using DFT - based plane-waves 
pseudopotential code CASTEP as implemented in Materials Studio 
software,33 with the projector augmented wave (PAW).34 The 
electron-exchange and correlation were described by the Perdew-
Burke-Ernzerhof (PBE) functional of the generalized gradient 
approximation (GGA).35 An energy cut-off of 500eV, and k-points 
of 13×13×13 were used, and were found to be sufficient to converge 
the total energy of the B2 Ti50Ru50-xPdx alloys with x ranging from 
0, 2.5, 5, 7.5, 10, 15, 25 and 50 at. %.

All the equilibrium crystal structures were obtained via geometry 
optimization in the Brayden-Fletcher-Goldfarb-Shanno (BFGS) 
minimization scheme.36 The convergence criterion of less than 
1×10-5 eV/atom, the maximum residual forces of 0.03 eV/Å, 
maximum residual bulk stress of 0.05GPa and maximum atomic 
displacement of 1×10-3Å were utilized to achieve reasonable 
accuracy. The elastic constants were computed from optimized 
crystal structure for each composition.  

2.1	 Phase stability

The stability of any compound can be deduced from the heats of 
formation commonly known as enthalpy of formation Hf,37 and 
it is used to determine the thermodynamic stability of phases. A 
phase is thermodynamically stable if Hf is found to be negative, else 
the phase becomes less thermodynamically stable if less negative 
or unstable if found to be positive.38 This stability property is 
expressed in Equation 1, 
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The crystal mechanical stability decreases when approaching the 
martensitic transition temperature, where the tetragonal shear 
modulus (C’) becomes much smaller than the monoclinic shear 
constant (C44) which represents the stiffness of the crystal against 
shear.44 The Zener anisotropic factor (A) is given as the ratio of C44 
to C’ and it is equal to 1 for isotropic crystals. Some of the 
mechanical properties determined from the computed elastic 
constants include the bulk modulus (B), trigonal shear modulus 
(G), Young’s modulus (E) and the Poisson’s ratio (v). 10,16,21,29,30 In 
all crystal structures, the polycrystalline elastic modulus can be 
estimated from their set of independent elastic constants by two 
approximation methods, i.e. the Voigt (V) method which is the 
upper bound and the Reuss (R) method which is the lower bound as 
shown by a set of expressions given in Equation 4 for cubic crystal 
structures. 
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from their set of independent elastic constants by two approximation methods, i.e. the Voigt (V) 114 

method which is the upper bound and the Reuss (R) method which is the lower bound as shown 115 

by a set of expressions given in Equation 4 for cubic crystal structures.  116 
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5
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The arithmetic average of the Voigt and Reuss is called the Voigt-Reuss-Hill (VHR) average. 118 

Thus the average shear (GH) and bulk (BH) modulus can be calculated using the set of expressions 119 

in Equation 5, including the average Young’s modulus (E) and the Poisson’s ratio (v) of the 120 

polycrystalline materials: 121 
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The first-principles calculations are considered as novel method 
for micro-investigation at the atomic scale to study the physical 
properties of solids.

2.3	 Electronic properties

The study of electronic structures through the density of states 
(DOS) provides insights about the formation of alloys, and their 
phase stability.46 The DOS of a system describes how dense the 
states are populated per energy level.47 A DOS of zero at Fermi 
level (EF) means that the states are empty, rendering the material an 
insulator48 due to the unavailability of electrons in the conduction 
band. In intermetallic compounds, there exists a pseudogap at the 
Fermi level (EF) of the DOS spectra that determines the stability 
of the compound. If the constituent metals are able to form an 
ordered intermetallic phase which is stable at low temperature, the 
EF falls at the centre of the pseudogap, whereas if the ordered phase 
forms but is only stable at high temperature then the EF cuts on the 
shoulder of the DOS peak, indicating instability of the phase at 0 
K. Thus high DOS at EF is considered to be related to the structural 
instability.49 And taking into account that at the anti-bonding 
region the DOS values are higher, the phase having high transition 
temperature will undergo structural reconfiguration to minimize 
the higher energy indicated by N (EF). Consequently, those systems 
with higher energy in the anti-bonding region will undergo MT and 
hence have potential to exhibit the SME. 

Thus, the electronic properties of the investigated alloys were 
determined from the TDOS spectra obtained from the optimised 
structures in terms of stability. They were also compared with those 
of TiPd and TiNi that are well known to possess the SME.17,18

3.	 Results and discussion 

3.1	 Structural properties and enthalpies of 
formation

The B2 cubic crystal structures of TiRu, Ti50Ru50-xPdx and 
TiPd used in this work are shown in Fig. 1, while the obtained 
equilibrium lattice parameters of the investigated alloys as well 
as their corresponding calculated enthalpies of formation are 
presented in Table 1. As shown in Table 1, the predicted lattice 
parameters of pure and alloyed B2 phases were found to be within 
the acceptable error margin of 3% and in agreement with previous 
works.10,23,25,29,50 The lattice parameter of the investigated ternaries 
(Ti50Ru50-xPdx) slightly increases with Pd addition. This is expected 
since Pd atom has a larger atomic radius than Ru atom.

The calculated Hf show that the B2 TiRu phase is the most 
thermodynamically stable compared to TiPd and TiNi, with TiNi 
found to be the least stable. These values were compared with 
available data and found to be in good agreement.16 It is interesting 
to note that heat of formation for  B2 Ti50Ru50-xPdx increased with 
addition of ≤ 7.5 at.% Pd, but at Pd composition above 7.5 at.% 
decreased Hf signifying reduced stability. The observation at 
Pd ≤ 7.5 at. % is in contrast to that of Diale et al, whereas at Pd  
> 7.5 at.% is in agreement, though their results show a strong linear 
trend.29

Table 1: Optimised structural models and formation enthalpies 
of the investigated B2 alloys

Phases
Lattice Parameters, 

a(Å)

 V(Å3)

ΔHf  (eV/atom)

GGA Literature GGA Literature

TiNi 3.059 3.015 28.62 -0.351 -

TiRu 3.097 3.08710,21 29.7 -0.819 0.74316

Ti50Ru47.5Pd2.5 3.097 - 29.71 -0.853 -

Ti50Ru45Pd5 3.099 - 29.75 -0.837 -

Ti50Ru42.5Pd7.5 3.101 - 29.84 -0.82 -

Ti50Ru40Pd10 3.104 - 29.92 -0.802 -

Ti50Ru35Pd15 3.114 - 30.19 -0.765 -

Ti50Ru25Pd25 3.151 - 31.29 -0.725 -

TiPd 3.227 3.1729 33.6 -0.373 0.51916,25

3.2	 Elastic constants and mechanical properties

The calculated elastic constants and deduced elastic moduli results 
of the investigated alloys are presented in Fig. 2. Fig. 2(a) shows 
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that the calculated elastic constants of B2 TiRu met the mechanical 
stability criterion set in Equation 3 for cubic crystals. However, 
this criteria was not satisfied for B2 TiPd, which indicates its 
mechanical instability at 0 K. Substituting some Ru atoms with 
Pd in pure TiRu, gradually decreased C11 and C44 while, C12 and CP 

increased up to 15 at.% Pd. It is between 10 and 15 at.%, where the 
mechanical stability criteria was broken (C11˂C12), and rendered 
the B2 phases unstable, which could be associated with a potential 
martensitic transition of a lower temperature phase with possibility 
of SME. Pettifor et al.39,51 stated that materials with metallic 
bonds become ductile if it has larger positive Cauchy pressure 
(CP), suggesting that the predicted ternary compositions would be 
more ductile than pure B2 TiRu. The metallicity of the B2 TiRu 
was found to strongly increase when more Pd atoms substitute Ru 
atoms and the Ti50Ru35Pd15 alloy had the highest metallic bonding 
and hence most ductility as indicated by the highest CP amongst the 
investigated alloys. 

The elastic modulus properties such as B, G, E and HV are 
important in determining the strength of materials, and these results 
are shown in Fig. 2(b). The G, E and HV decreased significantly, 
while B decreased gradually on adding up to 15 at. % Pd, and above 
this composition, E and HV remained almost constant whereas B 
dropped significantly.  

Jain et al.,10 stated that higher Young’s modulus (E) is associated 
with covalent or ionic bonds. Therefore, the larger E the harder the 
material to deform, whereas the smaller E the easier the materials 
to deform. The pure TiRu phase was found to have a higher value 
of E (316.2GPa) indicating rigidity, while the Ti50Ru25Pd25 had the 

lowest E amongst the investigated ternary compositions. Therefore, 
these compositions are expected to deform plastically, resulting in 
lower hardness as predicted. In many cases, the compound with 
high HV has large G, indicating that the hardness of materials is 
more sensitive to shear modulus than to bulk modulus.40,52 

To further characterize the ductility of the crystal structures, the 
Pugh’s and Poisson’s ratios were also evaluated. The determined 
Poisson’s ratio v, the classical Pugh’s modulus ratio B/G, tetragonal 
shear modulus (C’) and elastic anisotropy (A) of the investigated 
compositions are presented in Fig. 3. The A, v and B/G increased 
with increased Pd while shear modulus C’ and HV decreased, at 
least up to 15 at.%.

The results obtained showed that addition of Pd yielded some 
ductility to B2 TiRu. These results predict that at Pd compositions 
just above 10 at. %, the B2 phase becomes mechanically unstable 
as opposed to above 25 at. % as predicted by Diale et al.29 The 
Ti50Ru50-xPdx ternary compositions were found to be ductile, since 
their B/G was above 1.75 threshold value.53,54 Although the Pugh’s 
ratio of TiRu was in compliance with Pugh’s criteria for ductility, it 
is suggested for the first time here that a new factor be considered to 
predict increased ductility of B2 cubic crystals: the ratio of trigonal 
shear modulus (G) to tetragonal shear moduli (C’). For easy plastic 
shearing to occur G/C’ must be greater than 1, and in this work, this 
criteria was satisfied in alloys containing ≥ 10 at. % Pd. It is likely 
that this particular shearing criterion is responsible for martensitic 
transformation in known B2 Ti-X shape memory alloys. 
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Figure 2: Cubic crystal independence elastic constants C11, C12, C44, CP and the elastic modulus of the investigated B2 Ti50Ru50-xPdx 
compositions



First-principles study to explore the possibility of inducing martensitic transformation in ordered B2 TiRu phase by alloying with Pd

209Conference of the South African Advanced Materials Initiative 2021

In addition, Frantsevich’s rule states that the ductility or brittleness 
of a material can also be determined in terms of its Poisson ratio 
(v), and provides information about the bonding of materials.55 

Frantsevich’s rule suggests that if v is closer to 1/3, the material 
will be ductile (consist of metallic bonds), otherwise the material 
will be brittle (consist of covalent or ionic bonds) with ratios much 
smaller than 1/3.48,54,55 Fig. 3 shows that the calculated v for the 
ternary compositions were more ductile as they possess stronger 
metallic bonds, having v > 0.333. The ordered TiRu was expected 
to possess some covalent bond characteristics with its v ˂ 0.298.

3.3	 Electronic properties

The electronic structure and chemical bonding characteristics of 
the investigated B2 Ti50Ru50-xPdx compositions are presented in 

Fig. 4 with those of B2 TiNi and TiPd for comparison. The total 
densities of states (TDOS) for the investigated alloys were non-
zero across the Fermi level (EF), indicating that the plain B2 TiRu 
and B2 Ti50Ru50-xPdx compositions were mainly characterised by 
metallic bonds. The TDOS values at EF were 0.52, 1.17, 1.66, 1.23, 
1.25, 3.18, 3.40, 2.25 and 2.15/eV for Pd compositions ranging 
from 0, 2.5, 5, 7.5, 10, 15, 25, 50 at. % and TiNi, respectively. 
Again, the Ti50Ru35Pd15 composition had the highest metallicity, 
correlating to the highest B/G and CP.

Fig. 4 shows that the conduction and valence band coincide 
perfectly, resulting in a deep valley around the Fermi level of TDOS 
for B2 TiRu, signifying that this phase is thermodynamically stable 
at 0K and without a phase transformation. Thus, B2 TiRu does not 

Figure 3: Elastic moduli ratios, shear modulus C’ and corresponding HV of the investigated B2 compositions
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exhibit SME at room temperature, since SMAs usually show EF 
cutting on the shoulder of TDOS curve above the pseudogap.56 
However, introducing Pd on Ru site, shifted the deep-valley 
towards the conduction band with EF cutting on the shoulder of 
TDOS curve. This indicate that adding Pd induces instability in 
B2 TiRu, enabling it to potentially exhibits the SME and hence 
be considered as a potential SMA, in agreement with the previous 
study.29 Furthermore, the higher DOS values seems to signal 
higher transition temperature as can be seen in B2 TiPd, with high 
possibility to undergo MT and subsequently exhibit SME. 

4.	 Conclusions

For ternary compositions above 10 at.% Pd, the mechanical stability 
criteria is broken (C11˂C12), rendering the B2 phase unstable, which 
can be associated with a potential martensitic transition to a lower 
temperature phase, with the possibility to possess SME. This study 
proposes for the first time a new factor to be taken into consideration 
when predicting increased ductility of B2 cubic crystals: the ratio 
of trigonal shear modulus (G) to tetragonal shear moduli (C’) to be 
greater than 1. In agreement with mechanical stability predictions, 
the DOS results also revealed that adding Pd induced instability 
in B2 TiRu, suggesting that these alloys could be considered as 
potential SMAs with SME. 
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