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1. Introduction

Li-ion batteries (LIBs) are today’s most effective commercial 
devices for electrochemical energy storage, offering superior 
volumetric and gravimetric energy density compared with other 
battery technologies and have been widely used in power supplies 
such as electric vehicles, portable electronic and large-scale energy 
storage applications.1 However, LIB typically contain highly 
flammable, volatile, and explosion accelerated organic liquid 
electrolytes increasing demand for safer lithium-ion batteries.1 
To this end, the conception of all-solid-state lithium ion batteries 
(ASSLIBs) based on solid electrolytes has been proposed and has 
attracted increasing attention due to its intrinsic safety, high energy 
density and potentially long life cycle in that it may make battery 
configuration more efficient, and may enable use of a metallic Li 
anode and high-voltage cathode.2 The superior conductivity (~10-4 
S.cm-1) and excellent stability of the oxide garnet-type Li7La3Zr2O12 
(LLZO) solid-state electrolyte has ignited significant interest for its 
utilization in solid-state battery technology.3 The highest lithium-
ion conductivity is found with the cubic phase (space group Ia3̅d) 
of the Li7La3Zr2O12 garnet.4 However, at room temperature, a low-
energy reordering of Li-ions into the 16f, 32g (octahedral) and 8a 
(tetrahedral) sites of the tetragonal structure, can occur, reducing 
symmetry to I41/acd (tetragonal phase). The conductivity of the 
tetragonal phase at room temperature is ~2 orders of magnitude 
lower than that of the cubic phase.5 Herein, the Density Functional 
Theory (DFT) was utilized to provide more details on the stability 

of the tetragonal LLZO structure by determining the structural, 

mechanical and elastic properties as a model validation tool that will 

enable us to later attempt its electrochemical performance by means 

of supervalent doping.6  It is therefore important to understand the 

phase stability of tetragonal LLZO for further investigation and 

development of this promising oxide solid electrolytes.

2. Methodology

2.1 Computational procedure

The first principles approach with the Perdue-Burke-Ernzerhof 
(PBE)7 exchange-correlation functional and  projector augmented 
wave (PAW)8 pseudo-potentials within the Generalized Gradient 
Approximation (GGA) as implemented in the Vienna ab initio 
Simulation Package (VASP)9 was employed. A 5x5x5 Monkhorst-
pack grid for k-point sampling, and a cut-off energy of 500eV 
for the structure were utilized. The self-consistency convergence 
criterion for the energy was set to 10-5eV, and geometry relaxation 
was considered converged when all forces were less than 0.01eV/Å 
with maximum stress of 0.02 GPa. For better calculations of the 
mechanical and electronic properties, the same above mentioned 
k-mesh point and cut-off energy were used. The 8-formula unit 
(Li7La3Zr2O12) conventional unit cell, with tetragonal symmetry 
group I41/acd, for lattice constant calculations was used. The 
structure was fully optimized, relaxing the lattice parameters and 
ions. 
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3. Results and discussion

3.1 Structural properties

The optimized tetragonal (with space group I41/acd) LLZO 
crystal structure is shown in figure 1. Table 1 indicates that lattice 
parameters found for t-LLZO unit cell are a=b=13.12Å, and 
c=12.67Å, which are consistent with the reported experimental 
values of a=b=13.134Å, and c=12.663Å.10 The heat of formation 
is calculated using GGA approximation. The heat of formation for 
t-LLZO is -6511.01kJ/mol, which indicates that the structure is 
thermodynamically stable. Also note that the calculated volumes 
for t-LLZO (2203Å3) compares well to the experimental value 
2185Å3 10 which is within a 0.824% error.

Table 1: Calculated lattice constants (Å), energy of formation 
∆Hf (kJ/mol), and volume V (Å) of t-LLZO compared with 
other experimental results

Tetragonal Li7La3Zr2O12

This work Experimental
Lattice constant (Å) a=b=13.12 

c=12.66
a=b=13.13   

c=12.66
Energy of formation 
∆Hf(kJ/mol)

-6511.01   -

Volume V(Å3) 2203 2185

3.2 Mechanical stability

The elastic constants are calculated to predict the mechanical 
stability of the materials. The elastic coefficients describe the 
crystal’s mechanical and dynamic behaviour, and show how the 
structure deforms under pressure and then returns to its initial 
shape, and these coefficients are calculated in order to predict 
mechanical stability. Table 2 below shows elastic constants (C11, 
C12, C13, C16, C33, C44 and C66) values calculated using GGA 
approximation. It is clear that the elastic constants Cij of t-LLZO 
are all positive and greater than zero, which is content with the 
stability conditions. Furthermore, t-LLZO is elastically stable since 
the elastic constants satisfy the criterions given below. Thus, the 
elastic stability of t-LLZO is concluded using the results obtained 
from Table 2 below and evaluated using the criteria below:11

C11 > |C12|,

2C2
13 < C33 (C11 + C12),                                                                                                                (1)

C44 > 0, 2C2
16 < C66 (C11 − C12).

C11 > 0, C12 > 0, C13 > 0, C16 > 0, C33 > 0, C44 > 0 and C66 > 0

Table 2: Calculated elastic constants (C11, C12, C13, C16, C33, C44 
and C66) of t-LLZO using GGA approximation

Tetragonal Li7La3Zr2O12

t-LLZO Experimental12

C11 177.69 169.80
C12 85.46 63.90
C13 80.42 -
C16 1.91 -
C33 205.05 -
C44 76.51 69.80
C66 71.27 -

According to the Hill approximations, the bulk modulus (B) and 
Shear modulus (G) can be obtained from the values of elastic 
coefficients (C11, C12, C13, C16, C33, C44 and C66). It is also possible 
to calculate the values of Young’s modulus (E) and Poison ratio 
using the following formula:13
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The Young’s modulus is a measure of the stiffness of a solid material, whenever the Young’s modulus 
is high (100-200 GPa), the crystal has greater strength and hardness. Comparing the calculated values 
from Table 3 below and the values obtained from other works (Table 3), the reason for the small 
difference between them is due to the difference between the method used and approximation. However, 
although GGA tend to undermine elastic constants, the approximation is an excellent choice for 
studying elastic properties of solid electrolytes, because in comparison with experimental values, it 
reproduces high accuracy elastic constant results. The Shear modulus (G) demonstrates the strength of 
crystal to supress lithium dendrite formation, which in this case it is stiff enough. So the ratio of the 
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B
G
 > 1.75 implies that the material is ductile 

B
G
 < 1.75 implies that the material is brittle 

The calculated Pugh ratio B/G for t-LLZO indicates that the material is brittle, which is in agreement 
with the data from other works, and the Poisson’s (v = 0.258) ratio means that the material is 
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 Tetragonal Li7La3Zr2O12 
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Young modulus E (GPa) 163.51 154.90 163.11 
Pugh ratio B/G 
Poisson’s ratio v 

1.73 
0.26 

1.59 
0.24  

1.71 
0.26  

 

3.3 Electronic properties 

3.3.1. Band structure curves. 
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of being metal or non-metal can be predicted. In Figure 2 is the t-LLZO band structure diagram using 
GGA. The distance between the states at the maximum valence band (VBM) and the minimum 
conductive band (CBM) is determined by the electronic band gap. As a result, according to the below 
plotted band structure curves, t-LLZO is an insulator with a large band gap of 4.33 located at the g point 
of the Brillouin zone. The band gap is in good agreement with the experimental data which indicate that 
a wide electrochemical window is an intrinsic property of LLZO, facilitating its use in next-generation 
batteries.  

 

The calculated Pugh ratio B/G for t-LLZO indicates that the 
material is brittle, which is in agreement with the data from other 
works, and the Poisson’s (v = 0.258) ratio means that the material is 
predominantly ionic, hence it can be used in solid state Li batteries. 

Figure 1: Crystal structure of garnet-type tetragonal Li7La3Zr2O12 
(LLZO) with Li, La, Zr, and O ions shown in grey, turquoise, 
blue, and red, respectively
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3.3 Electronic properties

3.3.1. Band structure curves.

In the curves of the band structure in Figure 2, the energy function 
is plotted in the first Brillouin zone versus the energy (eV). From 
this diagram, some important information on the crystal-electronic 
nature of being metal or non-metal can be predicted. In Figure 2 
is the t-LLZO band structure diagram using GGA. The distance 
between the states at the maximum valence band (VBM) and the 
minimum conductive band (CBM) is determined by the electronic 
band gap. As a result, according to the below plotted band structure 
curves, t-LLZO is an insulator with a large band gap of 4.33 
located at the g point of the Brillouin zone. The band gap is in 
good agreement with the experimental data which indicate that a 
wide electrochemical window is an intrinsic property of LLZO, 
facilitating its use in next-generation batteries. 

3.4 Density of States

Density of states describes the probability of electron distribution 
in the energy spectrum. The total density of state calculations 
using GGA approximations for Li7La3Zr2O12 in tetragonal solid 
electrolyte phase at equilibrium pressure is shown in Figure 
3 below, in which Fermi energy is chosen as a zero point of 
reference. Density of states calculations and band structure 
calculations exhibit significant similarities, As shown in figure 3 

below, the lower valence band (LVB) in the range of −18 to −12 
eV, is formed by Li-2p, La-4p, Zr-5d, and O-2s orbitals. The upper 
valence band (UVB) in the range of −5 to 0 eV, which is formed 
by Li-2p, Zr-4f and O–2p orbitals, can be shown to be the result 
of the hybridization of the valence band. Lastly, the last region 
is the conduction band (CB) and the edge of the conduction 
band, as shown in figure 3 below, which is formed by the atoms 
La and Zr of the orbitals 4f and 5d respectively. There is a large 
band gap of 4.33 eV in the 5d orbital of the Zr atom, indicating 
that tetragonal Li7La3Zr2O12 structure is an insulator. Also, the large 
band gap implies that t-LLZO has a large electrochemical window. 
As such, tetragonal Li7La3Zr2O12 structure in a battery will prevent 
electronic leakage.

Conclusion

In the present study, we have performed detailed first principles 
calculations investigating the structural, mechanical and electronic 
properties of tetragonal LLZO. The t-LLZO structure was 
fully optimized in order to precisely reproduce reported lattice 
parameters. The heat of formation was found to be negative which 
indicated a good thermodynamic stability of the material. The 
elastic constants (Cij) of t-LLZO satisfy the mechanical stability 

Table 3: Calculated Bulk (B), Shear (G) and Young modulus (E), and Pugh ratio (B/G) modulus of t-LLZO using GGA approximation
Tetragonal Li7La3Zr2O12

This work Experimental12 Other13

Bulk modulus B (GPa) 112.23 99.20 111.42
Shear modulus G (GPa) 64.84 62.50 64.98
Young modulus E (GPa) 163.51 154.90 163.11
Pugh ratio B/G 1.73 1.59 1.71
Poisson’s ratio v 0.26 0.24 0.26

Figure 2: Band structure for t-LLZO solid electrolyte at 
equilibrium pressure using GGA approximations

Figure 3: Density of state for t-LLZO solid electrolyte at 
equilibrium pressure using GGA approximations
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criterions. Moreover, the calculated Poisson’s ratio shows that 
the t-LLZO is brittle and ionic, encouraging its use in the next-
generation Li-ion batteries. The electronic energy band structure 
and DOS were found to be in good agreement suggesting that 
t-LLZO is a magnetic separator with a wide band gap of ~4.33 eV, 
which ensures a sufficiently wide electrochemical window for all-
solid-state lithium batteries. Our analysis suggests that tetragonal 
LLZO is stable structurally, mechanically and electronically, 
paving the way for further improvement of the ionic conductivity 
through supervalent doping.
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