ISSN: (Online) 2222-4173, (Print) 0254-3486

- Page 1 of 15

Waargenome struktuur- en reaktiwiteitsverwantskappe in *trans*-[PtPh(L)₂Cl] tydens die verplasingreaksie van Cl⁻ deur l⁻ na verandering van die fosfien-, arsien- en stibienligande (L)⁺

Outeurs:

Stefanus Otto, Orbett T Alexander, Andreas Roodt

Affiliasie:

Departement Chemie, Universiteit van die Vrystaat, Posbus 339, Bloemfontein 9300, Suid-Afrika

Korresponderende outeurs:

Stefanus Otto E-pos: Fanie.Otto@Sasol.com Faks: +27-11-5223218 Andreas Roodt E-pos: Roodta@ufs.ac.za Faks:+27-51-4446384

Datums:

Ontvang:	26/06/19
Aanvaar:	17/09/19
Gepubliseer:	10/12/19

Hoe om hierdie artikel aan te haal:

Stefanus Otto, Orbett T Alexander, Andreas Roodt, Waargenome struktuur- en reaktiwiteitsverwantskappe in trans-[PtPh(L)₂Cl] tydens die verplasingreaksie van Cl⁻ deur I⁻ na verandering van die fosfien-, arsienen stibienligande (L), *Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie* 38(1) (2019). https://doi.org/10.36303/ SATNT.2019.38.1.731

An English copy of this paper is available online at http://www.satnt.ac.za/ index.php/satnt/article/ view/731

Kopiereg:

© 2019. Authors. Licensee: *Die Suid-Afrikaanse Akademie vir Wetenskap en Kuns.* Hierdie werk is onder die Creative Commons Attribution License gelisensieer. Vierkantig-planêre chloried vir jodied stubstitusiereaksies *trans* ten opsigte van 'n feniel σ -C binding is kineties ondersoek in chloroform vir 'n reeks steries-gestremde platinum(II) komplekse van die vorm *trans*-[PtPh(L)₂Cl] (L = PPh₃, 1; PPh₂Fc, 2; AsPh₃, 3; SbPh₃, 4). Die reaksies volg die normale assosiative aktivering, maar met ewewigte teenwoordig in alle stappe. Die tempokonstantes vir die direkte roete $k_{12'}$ is onderskeidelik (0.37 ± 0.03)×10⁻³ en 0 M⁻¹ s⁻¹ vir 1 en 2 by 40°C, en (1.6 ± 0.3)×10⁻³ en (143 ± 10)×10⁻³ M⁻¹ s⁻¹ vir 3 en 4 by 25°C. Die ooreenstemmende tempokonstantes vir die oplosmiddelroete, $k_{13'}$ is onderskeidelik (0.66 ± 0.03)×10⁻⁴ en (2.0 ± 0.2)×10⁻⁴ s⁻¹ vir 1 en 2 by 40°C en (4.1 ± 0.6)×10⁻⁴ en (1105 ± 14)×10⁻⁴ s⁻¹ vir 3 en 4 by 25°C. Die aktiveringsparameters vir 3 en 4 is bepaal as $\Delta H^{\neq} = 99.8 \pm 0.6$ en 31 ± 1 kJ mol⁻¹, met $\Delta S^{\neq} = 36 \pm 2$ en -157 ± 4 J K⁻¹ mol⁻¹ vir die direkte roete, $k_{12'}$ en $\Delta H^{\neq} = 45 \pm 2$ en 22.91 ± 0.11 kJ mol⁻¹ en $\Delta S^{\neq} = -181 \pm 7$ en -207.3 ± 0.4 J mol⁻¹ K⁻¹ vir die oplosmiddelroete, k_{13} onderskeidelik. Die kristalstrukture van *trans*-[PtPh(PPh₂Fc)₂Cl], *trans*-[PtPh(SbPh₃)₂Cl] en *trans*-[PtPh(SbPh₃)₂I] word gerapporteer. Struktuur- en reaktiwiteitsverwantskappe (van ongeveer vier ordegroottes) word bespreek, gebaseer op kinetiese data, multikern KMR-metings en die kristallografiese data.

Structure and reactivity relationships in trans-[PtPh(L),Cl] as observed from Cl⁻ anation by I' upon interchanging phosphine, arsine and stibine (L) ligands: Square-planar chloride for iodide substitution reactions trans to a phenyl σ-C was kinetically investigated in a series of sterically congested platinum(II) complexes of the form trans-[PtPh(L),Cl] (L = PPh₃, 1; PPh₂Fc, 2; AsPh₃, 3; SbPh₃, 4) in chloroform solution. The reactions follow the normal associative mode of activation, but with equilibria present in all steps. The rate constants for the direct pathway, k_{12} , are $(0.37 \pm 0.03) \times 10^{-3}$ and $0 \text{ M}^{-1} \text{ s}^{-1}$ for 1 and 2 at 40 °C, and $(1.6 \pm 10^{-3} \text{ s}^{-1})$ 0.3)×10⁻³ and (143 ± 10) ×10⁻³ M⁻¹ s⁻¹ for 3 and 4 at 25 °C. The corresponding rate constants for the solvent assisted pathway, $k_{13'}$ are $(0.66 \pm 0.03) \times 10^{-4}$ and $(2.0 \pm 0.2) \times 10^{-4}$ s⁻¹ for 1 and 2 at 40 $^{\circ}$ C and (4.1 ± 0.6)×10⁻⁴ and (1105 ± 14)×10⁻⁴ s⁻¹ for 3 and 4 at 25 °C. The activation parameters for **3** and **4** were determined as $\Delta H^{\neq} = 99.8 \pm 0.6$ and 31 ± 1 kJ mol⁻¹ and $\Delta S^{\neq} = 36 \pm 2$ and -157 \pm 4 J K⁻¹ mol⁻¹ for the direct route, $k_{12'}$ and $\Delta H^{\neq} = 45 \pm 2$ and 22.91 \pm 0.11 kJ mol⁻¹ and $\Delta S^{\neq} =$ -181 \pm 7 and -207.3 \pm 0.4 J mol⁻¹ K⁻¹ for the solvent assisted, $k_{13'}$ pathways respectively. The crystal structures of trans-[PtPh(PPh2Fc)2Cl], trans-[PtPh(AsPh32Cl], trans-[PtPh(SbPh32Cl] and *trans*-[PtPh(SbPh₄),I] are reported. Structure and reactivity relationships (of almost *four* orders-of-magnitude) are presented based on kinetic data, multi-nuclear NMR measurements and the crystallographic data.

Inleiding

Substitusiereaksies is belangrik in menige fundamentele en toegepaste prosesse soos katalitiese omskakelings, metaalekstraksie, medisinale anorganisese chemie en reaksies van belang in omgewingsprosesse, tipies ook vir die binding en omskakeling van koolstofdioksied na hoërwaarde produkte. (Johnstone, Suntharalingam en Lippard 2016) (Dobrynin, et al. 2019) (Warsink, et al. 2018). In hierdie verband kom vierkantig-planêre substitusiereaksies voor in verskeie model homogene katalitiese industriële prosesse. Hierdie reaksies volg gewoonlik 'n tipiese assosiatiewe aktiveringmode, alhoewel 'n aantal voorbeelde bestaan waarin 'n dissosiatiewe aktivering bevestig is. (Lanza, Minniti, et al. 1984a) (Lanza, Minniti, et al. 1984b)

Elektroniese aanvullende inligting is op aanvraag beskikbaar. Dit sluit in 'n volledige lys van pseudo eersteordetempokonstantes sowel as volledige kristallografiese besonderhede, wat ook in die Cambridge Kristallografiese Datasentrum (CCDC) opgeneem is vir *trans*-[PtPh(PPh₂Fc)₂C], *trans*-[PtPh(AsPh₃)₂C], *trans*-[PtPh(SbPh₃)₂C] en *trans*-[PtPh(SbPh₃)₂I] onder kodes CCDC 1924084, CCDC 1923815, CCDC 1923846 en CCDC 1923876, onderskeidelik.

Tans in diens van: Sasol Tegnologie Navorsing en Ontwikkeling, 1 Klasie Havengaweg, Sasolburg, 1947, Suid- Afrika

(Wendt, Deeth en Elding 2000). Die reaksietempo's is afhanklik van 'n reeks faktore wat die eienskappe van die *cis* en *trans* nie-labiele ligande, die lading van die kompleks, die oplosmiddel, die vertrekkende groep asook die konsentrasies van die inkomende en vertrekkende spesies insluit. Steriese en elektroniese eienskappe van die metaalkompleks kan die assosiasie van 'n vyfde inkomende ligand bevoordeel/ teëwerk om 'n 18-elektron oorgangstoestand te vorm, maar ook 'n 14-elektronspesie (verlies van een van die vier ligande) bevoordeel waarin daar dus slegs drie ligande gekoördineerd is. Meer onlangse voorbeelde van literatuur in die verband is beskikbaar. (Hoffmann, et al. 2015) (Johnstone, Suntharalingam en Lippard 2016) (Crespo, et al. 2014) (Bugarčić, et al. 2012).

Twee roetes parallel aanmekaar word normaalweg aangetref vir vierkantig-planêre substitusiereaksies, wat eerstens die direkte aanval van die inkomende nukleofiel op die metaalsentrum behels om die produk te vorm, of tweedens volgens 'n oplosmiddelroete. Die teenwoordigheid van ewewigsreaksies soos aangedui in Skema 1 kan egter tot baie meer komplekse gedrag van die *pseudo* eersteordetempokonstante lei, soos geïllustreer deur die uitdrukking in Vgl. 1 ([Cl⁻], [I⁻] >> [Pt]). (Seguin en Zador 1976) (De Waal en Robb 1978) (Elding en Gröning 1980) (Otto, Botha en Roodt 2018).

SKEMA 1: Voorstelling van 'n vierkantig-planêre substitusiereaksie van X (CI) deur Y (I) in die fenielkompleks *trans*-[PtPh(L]_X] soos in hierdie studie ondersoek is, en wat beide die parallelle direkte substitusie asook die oplosmiddelroete aandui; waar [PtPhL_X] = [PtPhL_2I] = 1, [PtPhL_2S] = 3. Die voettekens in die tempokonstantes toon die spesies aan wat betrokke is by 'n spesifieke stap, bv. k_{12} dui die omskakeling van kompleks 1 na 2. Die oplosmiddel se konsentrasie is reeds in die tempokonstantes k_{13} en k_{23} inkorporeer, onderskeidelik as k_{13} = k_{13} '[S] en k_{23} = k_{23} '[S]. ([S] dui die konsentrasie van die oplosmiddel aan, dws. 12.50 mol dm³ vir CHCl₃ by 25°C).

$$k_{\rm obs} = k_{12}([Y] + \frac{[X]}{K_{\rm eq}}) + \frac{\frac{k_{13}}{K_{\rm eq}} \frac{k_{32}}{k_{31}} [X] + k_{13} \frac{k_{32}}{k_{31}} [Y]}{[X] + \frac{k_{32}}{k_{31}} [Y]}$$
(1)

In Vgl. 1 dui K_{eq} die ewewigskonstante vir die vorming van kompleks 2 aan en is gedefinieer as die tempo van die voorwaartse reaksies gedeel deur dié van die terugwaartse reaksies (Vgl. 2) soos teenwoordig in die direkte en oplosmiddelroetes in Skema 1.

$$K_{\rm eq} = \frac{k_{12}}{k_{21}} = \frac{k_{13}k_{32}}{k_{23}k_{31}} \tag{2}$$

Indien die ewewig die vorming van die finale produk (kompleks 2) bevoordeel (K_{eq} >>1), kan Vgl. 2 vereenvoudig om die welbekende tweeterm tempowet (Vgl. 3) vir vierkantig-planêre substitusiereaksies te lewer.

$$k_{\rm obs} = k_{12}[Y] + k_{13} \tag{3}$$

'n Groot aantal voorbeelde van vierkantig-planêre substitusiereaksies is bespreek in die literatuur, ook in 'n vorige artikel (Otto, Botha en Roodt 2018), en die leser word hierna verwys vir verdere agtergrond indien benodig (Baddley en Basolo 1966) (Goddard en Basolo 1968) (Palmer en Kelm 1975) (Roulet en Gray 1972) (Van Eldik, et al. 1981) (Palmer, et al. 1978) (Van Eldik, et al. 1981) (Pienaar, Kotowski en Van Eldik 1989) (Berger, et al. 1989) (Elding, Kellenberger en Venanzi 1983) (Cusumano, et al. 1979) (Ricevuto, Romeo en Trozzi 1974) (Minnitti, et al. 1987) (Frey, et al. 1989) (Romeo, Grassi en Scolaro 1992). Enkele verdere voorbeelde wat vierkantig-planêre substitusiereaksies insluit, wat deur driegekoördineerde organgstoestande gaan, sluit die ongekataliseerde cis na trans isomerisasie van *cis*-[PtR(PEt₂)₂X] (R = alkiel of ariel; X = oplosmiddelmolekuul of haliedioon) in. (Alibrandi, Scolaro en Romeo 1991) (Alibrandi, Cusumano, et al. 1989) (Romeo, Alibrandi en Scolaro 1993) (Kubota, et al. 1982) (Scott en Puddephatt 1983).

Vir meer onlangse voorbeelde van volledige kinetiese studies van hierdie tipe komplekse word die leser na die literatuur verwys (Hoffmann, et al. 2015) (Johnstone, Suntharalingam en Lippard 2016) (Maidich, et al. 2013) (Otto, Botha en Roodt 2018) (Crespo, et al. 2014) (Bugarčić, et al. 2012) (Hennion, et al. 2013).

Ten spyte daarvan dat komplekse met platinum(IV)koolstof σ -bindings reeds meer as 100 jaar gelede berei is (Pope en Peachey 1907), was dit eers in die 1950's dat die eerste platinum(II)-koolstof σ -bindingkomplekse beskryf is (Chatt, Vallarino en Venanzi 1957) en spesifiek die wat platinum(II)-*metiel* σ -bindings besit. (Chatt en Shaw 1959).

'n Vorige ondersoek (Otto en Roodt 2006) het die kinetiese gedrag van *trans*-[Pt**Me**(SMe₂)₂Cl] ten opsigte van anioniese en neutrale ligande met verskillende inkomende nukleofiele beskryf. In 'n meer onlangse artikel (Otto, Botha en Roodt 2018) is volledige resultate vir die chloriedsubstitusie deur jodiedione, in chloroform as oplosmiddel, *trans* ten opsigte van sterk *trans* labiliserende groepe (Me⁻ en H⁻) *trans*-[Pt(Me/H)(L)₂X] komplekse wat Groep 15 ligande L bevat het, beskryf. Hierdie reaksies het normale assosiatiewe gedrag openbaar, maar met ewewigte in alle stappe. Struktuur- en reaktiwiteitsverwantskappe is gerapporteer, gebaseer op kinetiese data, multikern KMR resultate en kristallografiese data. Hierdie studie het die afhanklikheid

en die gedrag van die pseudo eersteordetempokonstante tipes soos in Vgl. 1 beskryf, onderstreep en 'n meer as *vier ordegroote* reaktiwiteitsreeks is waargeneem.

In hierdie artikel is die fokus uitgebrei na chloried substitusie deur jodiedione, in chloroform as oplosmiddel, trans ten opsigte van 'n goot feniel o-C groep wat die steriese bonkigheid rondom die Pt(II) dramaties vergroot, maar terselfdertyd 'n groot trans elektroniese invloed (baie soortgelyk aan metiel) handhaaf. 'n Volledige kinetiese studie word gevolglik aangebied en beskryf die substitusiegedrag van *trans*-[PtPh(L)₂Cl] komplekse (L = PPh₃, PPh₂Fc, AsPh₃ en SbPh₃), met die cis ligande verder uitgebrei na onder in die Groep 15 atoomreeks om ook SbPh₃ in te sluit. Hierdie studie evalueer dus ook verder die koördinasiegedrag van Sb as atoom (Otto en Roodt 2002a) (Otto en Roodt 2002b) (Otto en Roodt 2008) in platinumgroep metaalkomplekse. Daar is spesifiek baie min data beskikbaar vir stibienkomplekse, soos ook redelik onlangs aangetoon is. (Hennion, et al. 2013).

Materiaal en Eksperimentele Metodes Algemeen

Alle uitgangstowwe wat vir die bereiding van die komplekse gebruik is, was van normale reagensgraad. Die volgende metaalkomplekse en ligande was kommersieel beskikbaar: K₂PtCl₄ (Next Chimica); SMe₂ (Merck); NaBPh₄ (Aldrich); PPh₃ (Merck); AsPh₃ (Merck) en SbPh₃. (Merck). Alle ander reagense en oplosmiddels was van die beste graad beskikbaar.

Die komplekse is gekarakteriseer met behulp van ¹H, ¹³C, ³¹P en ¹⁹⁵Pt KMR (Bruker spektrometer, ingestel op onderskeidelik 300, 75.468, 121.497 en 64.525 MHz). Alle KMR spektra is in CDCl₃ opgeneem, terwyl die ¹H spektra op die CHCl₃ piek (7.24 dpm) en die ¹³C KMR spektra relatief tot die ¹³C resonanspiek (77.66 dpm) gekalibreer is. Die ¹³C KMR spektra rapporteer slegs die chemiese verskuiwing tesame met die eerste Pt-195 koppeling. Die ³¹P KMR spektra is relatief tot 85% H₃PO₄ as interne standaard in 'n dun kappilêre buisie (0 dpm), en die ¹⁹⁵Pt KMR spektra is relatief tot K₂PtCl₄ as ekterne standaard (-1639 dpm), gekalibreer.

Bereiding van komplekse

'n Mengsel van die *cis*- en *trans*- $[PtCl_2(SMe_2)_2]$ en PPh₂Fc is onderskeidelik berei volgens die metodes soos gerapporteer deur (Otto en Roodt 2006) en (Sollot, et al. 1963). Die oplossings- en substitusiegedrag van die verskillende komplekse ten opsigte van jodiedione is in situ met behulp van KMR eksperimente evalueer.

trans-[PtPh(SMe₂)₂Cl]. 'n Mengsel van die *cis*- en *trans*-[PtCl₂(SMe₂)₂] (500 mg; 1.3 mmol) is opgelos in dichloormetaan (10 mL) en NaBPh₄ (445 mg; 1.3 mmol) is bygevoeg. Die suspensie is vir ongeveer een week by kamertemperatuur geroer en daarna gefiltreer om die NaCl wat tydens die reaksie gevorm het, te verwyder. Die produk is op 'n silikakolom (heksaan/ asetoon; 8/ 2) gesuiwer (387 mg; 70%). ¹H KMR: δ 2.31 (t, 12H, ³*J*_{Pt-H} = 58 Hz); 6.9 - 7.0 (m, 3H); 7.3 (m, 2H).

trans-[PtPh(PPh₃)₂Cl], Ia. *trans*-[PtPh(SMe₂)₂Cl] (100 mg; 0.23 mmol) is opgelos in asetoon (10 mL) en PPh₃ (184 mg; 0.70 mmol), ook opgelos in asetoon (5 mL), is daarby gevoeg, sonder om te roer. Stadige verdamping van die asetoon het die kristallyne produk gelewer wat met eter gewas is om spoorhoeveelhede van ongereageerde fosfien te verwyder. Die gebruik van meer gekonsentreerde oplossings, of 'n groter oormaat fosfien lei tot vinnige presipitering van die produk in ongeveer kwantitatiewe opbrengs (189 mg; 98%). ¹H KMR: δ 6.09 (t, 2H); 6.25 (t, 1H); 6.62 (td, 2H); 7.18 - 7.34 (m, 18H); 7.45 - 7.55 (m, 12H). ³¹P KMR: δ 24.95 (t, ¹J_{PLP} = 3151 Hz). ¹⁹⁵Pt KMR: δ -4377 (t, ¹J_{PLP} = 3142 Hz). Analise bereken vir C₄₂ H₃₅ Cl P₂ Pt (832.206): C, 60.62; H, 4.24. Gevind C, 60.81; H, 4.41.

trans-[PtPh(PPh₃)₂I], Ib. Die *trans*-[PtPh(PPh₃)₂Cl] kompleks (10 mg; 0.012 mmol) is opgelos in CDCl₃ (3 mL) in 'n KMRbuis (10 mm) en Bu₄NI (44 mg; 0.12 mmol) is bygevoeg. Die reaksieverloop is met behulp van ³¹P NMR gevolg wat die eenduidige omskakeling van die chlorido-uitgangstof na die ooreeenstemmende jodidoproduk aangedui het. ³¹P KMR: δ 24.21 (t, ¹J_{PLP} = 3134 Hz).

trans-[PtPh(PPh₂Fc)₂Cl], IIa. Dieselfde algemene prosedure soos hierbo beskryf vir Ia is gebruik. Herkristallisasie vanuit benseen het kristalle wat geskik was vir X-straalanalise gelewer (237 mg; 98%) ¹H KMR: δ 3.81 (m, 4H); 4.22 (m, 4H); 4.31 (s, 10H); 6.35 (t, 2H); 6.49 (t, 1H); 6.82 (td, 2H); 7.21 - 7.34 (m, 12H); 7.42 - 7.52 (m, 8H). ³¹P KMR: δ 16.34 (t, ¹J_{Pt-P} = 3142 Hz). ¹⁹⁵Pt KMR: δ -4300 (t, ¹J_{Pt-P} = 3136 Hz). Analise bereken vir C₅₀ H₄₃ Cl P₂ Fe₂ Pt (1048.045): C, 57.30; H, 4.14. Gevind: C, 57.52; H, 4.31.

trans-[PtPh(PPh₂Fc)₂I], IIb. Dieselfde prosedure soos beskryf vir Ib, is gebruik. ³¹P KMR: δ 13.17 (t, ¹J_{Pt-P} = 3066 Hz).

trans-[PtPh(AsPh₃)₂Cl], IIIa. Dieselfde algemene prosedure soos hierbo beskryf vir Ia is gebruik. Herkristallisasie vanuit benseen het kristalle wat geskik was vir X-straalanalise gelewer Deur meer verdunde oplossings van *trans*-[PtPh(SMe₂)₂Cl] en AsPh₃ in asetoon te gebruik is kristalle wat geskik was vir X-straalanalise, verkry (209 mg; 97%). ¹H KMR: δ 6.18 (t, 2H); 6.29 (t, 1H); 6.75 (td, 2H); 7.20 - 7.35 (m, 18H); 7.42 - 7.48 (m, 12H). ¹³C KMR: δ 131.45 (t, ¹J_{PtC} = 830 Hz). ¹⁹⁵Pt KMR: δ -4316 (s). Analise bereken vir C₄₂ H₃₅ Cl As₂ Pt (920.101): C, 54.83; H, 3.83. Gevind: C, 54.62; H, 3.98.

trans-[PtPh(AsPh₃)₂I], IIIb. Dieselfde prosedure soos beskryf vir Ib is gebruik en ¹⁹⁵Pt KMR het die eenduidige omskakeling na die jodidoproduk bevestig; ¹⁹⁵Pt NMR: δ -4738 (s).

trans-[PtPh(SbPh₃)₂Cl], IVa. Dieselfde algemene prosedure soos hierbo beskryf vir Ia is gebruik. 'n Meer verdunde oplossing van *trans*-[PtPh(SMe₂)₂Cl] en SbPh₃ in asetoon is gebruik om geel plaatjie-agtige kristalle wat geskik was vir

X-straalanalise, te verkry (153 mg; 65%). ¹H KMR: δ 6.44 (m, 3H); 7.10 (m, 2H); 7.25 - 7.38 (m, 18H); 7.39 - 7.44 (m, 12H). ¹⁹⁵Pt KMR: δ -4136 (s). Analise bereken vir C_{42} H₃₅ Cl Sb₂ Pt (1013.778): C, 49.76; H, 3.48. Gevind: C, 50.07; H, 3.72.

trans-[PtPh(SbPh₃)₂I], IVb. Dieselfde prosedure soos beskryf vir IIIb is gebruik en ¹⁹⁵Pt KMR het die eenduidige omskakeling na die jodidoproduk bevestig. Kristalle wat geskik is vir X-straalanalise is ook verkry deur stadige verdamping van die oplossing binne-in die KMR-buis. ¹⁹⁵Pt NMR: δ -4689 (s). Analise bereken vir C₄₂ H₃₅ I Sb₂ Pt (1105.230): C, 45.64; H, 3.19. Gevind: C, 46.43; H, 3.61.

Kinetiese metings

Dit is belangrik om daarop te let dat die reagerende spesies wat in die kinetiese eksperimente gebruik is en hieronder bespreek word, met *Arabiese nommers* aangedui word (1 – 4), ook as na die literatuurkomplekse, **5** – **10** verwys word. UV-Sigbare tydverwante spektra vir die stadiger reaksies is op 'n Cary 300 Bio spektrofotometer, toegerus met 'n temperatuurbeheermeganisme, versamel. Die ooreenstemmende tydverwante data vir die vinniger reaksies is op 'n herboude Durram D110 stopvloeisisteem, ook toegerus met 'n temperatuurbeheerenheid, versamel. In alle gevalle, behalwe vir 2, is die reaksies in droë chloroform (gedistilleer en gedroog), met 'n finale metaalkonsentrasie van 0.25 mmol dm⁻³, uitgevoer. In die UV-ondersoek van 2 is kinetiese spoorprofiele met wisselende akkuraatheid en groot relatiewe geskatte standaardafwykings (gsa's), waargeneem, toegeskryf aan (i) betekenisvolle bydraes van die ferroseen brokstuk tot die totale absorbansie, en (ii) gekoppel met die klein ewewigskonstante. Die waardes vir k_{obs} is gevolglik met behulp van ³¹P KMR met [Pt] = 2.5 mmol dm-3, bepaal. Alle reaksiemengsels het 'n 2.5 mM bygevoegde hoeveelheid chloriedione bevat om te verseker dat die verlatende ligand ook konstant bly tydens die reaksie (1 en 2 uitgesluit, wat geen addisionele chloriedione bevat het nie). Die finale jodiedkonsentrasies is tussen die grense 2.5 – 150 mM gehandhaaf, wat verseker het dat die reaksies ten alle tye onder pseudo eersteordekondisies bestudeer is. Komplekse 1 en 2 is as gevolg van hul lae reaktiwiteit slegs by 40°C bestudeer. In teenstelling hiermee kon komplekse 3 en 4 met gemak by 10, 25 en 40°C bestudeer word ten einde die aktiveringsparameters daarvan te bepaal. Die waargenome tempokonstantes is met behulp van nie-linieêre kleinstekwadratepassings vanaf die absorbasie vs. tyd reaksieprofieldata met behulp van die programme SCIENTIST (MicroMath 1990) vir die stadige reaksies, en OLIS (On-Line Instrument-Systems

TABEL 1: Kristallografiese en verfyningsparameters vir IIa, IIIa, IVa en IVb.

	lla	Illa	IVa	IVb
Emp. formule	C ₅₀ H ₄₃ ClFe ₂ P ₂ Pt	C ₄₂ H ₃₅ As ₂ ClPt	C ₄₂ H ₃₅ CISb ₂ Pt	C ₄₂ H ₃₅ ISb ₂ Pt
Form. massa	1048.02	920.08	1013.74	1105.19
Kristalsisteem	Monoklinies	Orthorhombies	Monoklinies	Triklinies
Ruimtegroep	C2/c	Pbca	C2/c	PĪ
a/ Å	13.581(3)	33.595(2)	16.508(3)	11.3655(3)
<i>b/</i> Å	17.865(4)	19.7316(13)	11.1760(10)	12.9484(4)
c/ Å	17.593(4)	10.7505(7)	19.989(3)	13.6154(4)
α/°	90	90	90	80.178(1)
β/ °	105.91(3)	90	95.660(10)	70.443(1)
γ/ °	90	90	90	79.059(1)
<i>V</i> / Å ³	4105.1(14)	7126.4(8)	3669.9(9)	1841.34(9)
Ζ	4	8	4	2
D / g.cm ⁻³	1.696	1.715	1.835	1.933
µ/ mm ⁻¹	4.276	5.885	5.365	6.122
Tmaks/ Tmin	0.536/ 0.258	0.536/ 0.258	0.199/ 0.037	0.675/0.234
F(000)	2080	3584	1936	1040
Kristalgrootte/ mm	0.30x0.20x0.16	0.40x0.30x0.28	0.30x0.22x0.12	0.35x0.24x0.15
θ limiete/ °	2.04 tot 30.51	2.06 tot 26.02	2.20 tot 29.57	2.08 tot 29.57
Indeksgrense	-19≤h ≤19	-41 ≤ h ≤ 35	-21 ≤ h ≤ 22	-15 ≤h ≤15
	-24 ≤ k ≤ 25	-24 ≤ k ≤ 24	-15 ≤k ≤15	-12 ≤ k ≤ 17
	-25 ≤ ≤ 24	-13 ≤ I ≤ 12	-27 ≤l ≤26	-18 ≤ I ≤ 18
Aantal refl.	20616	39925	17714	18204
Unieke refl.	6205	7014	5140	10233
R _{int}	0.0395	0.0668	0.0516	0.0565
Waargenome refl. (/>2(σ)/)	4843	5036	3821	8118
Data/ beperk/ param.	6205/ 0/ 255	7014/ 0/ 415	5140/ 0/ 210	10233/ 0/ 416
GooF	0.968	1.097	1.040	0.979
R (I>2(σ)I) R ^a	0.0283	0.0484	0.0389	0.0344
<i>wR</i> ^b	0.0568	0.1025	0.0944	0.0787
R (alle data) R	0.0463	0.0809	0.0608	0.0503
wR	0.0606	0.1159	0.1065	0.0839
$\Delta \rho_{\text{maks}}; \Delta \rho_{\text{min}} / \text{ e.Å}^{-3}$	0.624; -0.992	2.493; -1.282	0.912; -1.769	1.942; -1.582

^{a)} $R = [(\Sigma \Delta F)/(\Sigma F_{o})]$

^{b)} wR = $\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]^{1/2}$

Inc.) vir die stopvloeidata verkry. Tempokonstantes vir die stopvloeidata is telkens verkry vanaf die gemiddelde van vyf lopies. Die waargenome *pseudo* eersteordetempokonstantes is vervolgens teen die ligandkonsentrasies via nielinieêre kleinstekwadratetegnieke aan die volledige tempouitdrukking vir vierkantig-planêre substitusie (Vgl. 1) gepas, terwyl die aktiveringsparameters vanaf die eksponensiële vorm van die Eyringuitdrukking verkry is. (Plutino, et al. 1999).

X-straalkristallografie

Dit is belangrik om daarop te let dat die vastetoestand- en kristalstrukture soos hieronder bespreek met Romeinse nommering I - IV aangedui word. Alle X-straaldiffraksie intensiteitsdata is as ω-skandering by 293(2) K op 'n Siemens SMART CCD diffraktometer verkry, deur gebruik te maak van Mo K_a (0.71073 Å) straling vanaf 'n rotasieanodebron. Simmetrieverwante refleksies is bymekaargevoeg en geïntegreer deur gebruik te maak van die SAINTprogram, en is gekorrigeer vir Lorentz polarisasieen absorpsie-effekte met behulp van SADABS. (Bruker-AXS-Inc. 2007). Na voltooiing van die volledige dataopname is die eerste 50 raampies weer opgeneem om te verseker dat daar geen ontbinding van die kristalle plaasgevind het nie. Die stukture is opgelos volgens die swaaratoom-metode en is deur middel van die kleinstekwadrate programpakket SHELXL97 (Sheldrick 2008) verfyn, met $\Sigma(/F_o/-/F_c/)^2$ wat geminimiseer is. Alle niewaterstofatome is anisotropies verfyn, terwyl die waterstofatome toegelaat is om op hul oueratome te "ry". Alle figure is met behulp van die DIAMOND-program verkry (Brandenburg 1998) terwyl kristallografiese data, besonderhede van dataversamelings en verfyningsparameters IIa, IIIa, IVa en IVb in Tabel 1 aangegee word.

Resulte en Bespreking Sintese en KMR Karakterisering

Die komplekse is berei soos in die eksperimentele gedeelte hierbo aangedui en is eenduidig deur middel van multikern KMR-spektroskopie en X-Straalkristallografie gekarakteriseer. Oor die algemeen kan die fenielkomplekse van Pt(II) met die genoemde Groep 15 skenkeratoomligande geredelik berei word deur die SMe, of COD in die trans-[PtPh(SMe₂)₂Cl] of [PtPh(COD)Cl] te verplaas, of deur feniellitium of 'n Grignardreagens en die gekose cis-[Pt(Cl)₂(L)₂] kompleks te gebruik. Die voorkeurmetode was egter fenieloordrag vanaf BPh₄⁻ in die SMe₂-kompleks deur die gemodifiseerde metode soos ontwikkel in die vroeë 1990's. (Kukushkin, et al. 1992) Hierdie metode gee 'n goeie opbrengs van suiwer trans-[PtPh(SMe₂)₂Cl] en ten spyte van 'n reaksietyd van ongeveer een week, is dit nie $arbeid intensie fof vogsensitie fnie. Die {\it trans-[PtPh(SMe_{\gamma})_{\gamma}Cl]}$ kompleks is stabiel genoeg om vir etlike weke (selfs maande) te stoor en die tioeterligande kan gemaklik deur die Groep 15 donoratoomligande in hierdie studie verplaas word.

Kristallografie

Soos hierbo aangedui, is dit belangrik om daarop te let dat die vastetoestand- en kristalstrukture soos hieronder bespreek met Romeinse nommering I - IV aangedui word. 'n Volledige kristallografiestudie is uitgevoer om te verseker dat die komplekse akkuraat en volledig vir die kinetiese ondersoek karakteriseer is. Hierdie is spesifiek van toepassing op arsien- en stibienkomplekse, IIa en IVa, aangesien dit vir beide moeilik is om met ander tegnieke soos IR spektroskopie en selfs 1H-, 13C- of 195Pt KMRspektroskopie eenduidig te bevestig. Voorts was dit ook belangrik om die akkurate strukture te hê sodat moontlike struktuur/ reaktiwiteitsverwantskappe in die grondtoestand (X-straalkristalstrukture) en die vloeistof (geaktiveerde toestand/ reaksiekinetika), vasgepen kan word. (Roodt, Visser en Brink 2011). Uitgesoekte geometriese parameters is daarom in Tabel 2 saamgevat terwyl molekuuldiagramme, die atoomnommering, asook die verskillende atome se termiese ellipsoïede onderskeidelik in Fig. 1 en 2 aangedui word.

Die kristalstrukture van **II***a*, **III***a* en **IV***a* toon dat al die komplekse verwronge vierkantig-planêre geometrieë rondom die Pt(II) metaalsentrum bevat, met die bonkige

FIGUUR 1: Molekuuldiagramme wat die atoomnommering sowel as die verskillende atome se termiese ellipsoïede aandui (30% waarskynlikheidsvlak), met watersofatome uitgelaat vir duidelikheid vir (a) IIa, en (b) IIIa. In die nommeringsisteem van die feniel-/siklopentadieenringe dui die eerste getal die ligandnommer, die tweede die ringnommer (1 – 4) en die derde die koolstofatoomposisie in die ring (1- 6 vir Ph; 1- 5 vir Cp) onderskeidelik aan.

tersiêre fosfien-, arsien- en stibienligande in 'n *trans*-orientasie relatief tot mekaar. Komplekse **IIIa** en **IVa** verteenwoordig voorbeelde van seldsame struktuurstudies van *bis*-arsien en -stibienkomplekse van Pt(II), wat tot dusver beperkte aandag in die literatuur gekry het (Allen 2002).

Dit is voorheen uitgewys (Otto, Roodt en Leipoldt 1995) (Otto, Botha en Roodt 2018) (Roodt, Otto en Steyl 2003) dat

TABEL 2: Uitgesoekte geometrieparameters vir IIa, IIIa, IVa en IVb.					
	lla	Illa	IVa	IVb	
Pt-Cl	2.3988(12)	2.4575(18)	2.387(2)	2.6805(3)*	
Pt-C1	2.022(4)	2.042(8)	2.018(6)	2.037(4)	
Pt-L1	2.3298(8)	2.3982(8)	2.5419(5)	2.5353(3)	
Pt-L2		2.3990(8)		2.5450(3)	
L1-C111	1.830(3)	1.945(8)	2.113(5)	2.136(4)	
L1-C121	1.827(3)	1.936(8)	2.127(5)	2.142(5)	
L1-C131	1.807(3)	1.945(8)	2.121(5)	2.133(4)	
L2-C211		1.929(8)		2.136(4)	
L2-C221		1.929(8)		2.127(5)	
L2-C231		1.955(8)		2.140(4)	
L1-L2	4.660(1)	4.794(1)	5.080(1)	5.010(1)	
L1-Pt-L2	179.98(3)	175.92(3)	173.728(17)	160.501(13)	
L1-Pt-Cl	90.010(16)	91.11(5)	93.136(8)	95.806(11)*	
L2-Pt-Cl		92.70(5)		89.886(11)*	
CI-Pt-C1	180.0	177.0(3)	180.0	178.14(13)*	
L1-Pt-C1	89.990(16)	89.4(2)	86.864(9)	84.81(11)	
L2-Pt-C1		86.7(2)		88.97(11)	
C111-L1-Pt	110.20(9)	119.1(2)	120.37(14)	124.26(11)	
C121-L1-Pt	116.09(8)	113.8(2)	118.34(13)	102.93(12)	
C131-L1-Pt	120.38(9)	115.6(2)	112.20(13)	123.56(12)	
C211-L2-Pt		110.5(3)		126.47(12)	
C221-L2-Pt		117.3(2)		105.41(12)	
C231-L2-Pt		118.5(2)		121.56(12)	
C111-L1-C121	105.19(12)	99.5(3)	99.2(2)	97.37(17)	
C111-L1-C131	102.39(12)	100.4(3)	102.1(2)	101.50(17)	
C121-L1-C131	100.74(12)	106.1(3)	101.8(2)	101.74(18)	
C211-L2-C221		103.0(4)		100.12(18)	
C211-L2-C231		103.9(4)		97.19(17)	
C221-L2-C231		101.7(3)		101.99(18)	
L1-Pt-C1-C2	64.92(13)	87.3(7)	82.8(3)	93.3(4)	
#(^θ / ₂) _{E11}	87.3	78.7	73.4	68.5	
$\left(\frac{\theta}{2}\right)_{E12}$	71.5	75.3	65.2	74.5	
$\left(\frac{\theta}{2}\right)_{E13}$	100.3	65.1	68.8	64.3	
$\theta_{E(1)}$	173	146	138	138	
$\left(\frac{\theta}{2}\right)_{E21}$		81.7		69.6	
$\left(\frac{\theta}{2}\right)_{E22}$		74.1		87.6	
$\left(\frac{\theta}{2}\right)_{E23}$		61.8		59.4	
$\theta_{E(2)}$		145		144	

* Pt-I; $\neq [(\theta_2)_{E11}]$; Halfhoeke soos omskryf in literatuur (Tolman 1977)

FIGUUR 2: Molekuuldiagramme wat die atoomnommering sowel as die verskillende atome se termiese ellipsoïede aandui (30% waarskynlikheidsvlak), met watersofatome uitgelaat vir duidelikheid vir (a) IVa, en (b) IVb. In die nommeringsisteem van die fenielringe dui die eerste getal die ligandnommer, die tweede die ringnommer (1 – 3) en die derde die koolstofatoomposisie in die ring (1- 6) onderskeidelik aan.

die nabyverwante *trans*-[PtMe(L)₂Cl] (L = tersiêre fosfienligande) komplekse goeie kandidate vir wanordelike kristalpakking, veral tov die metiel- en chlorido asrigting (tipies inversiesentrums deur die Pt(II) atoom) is. In die huidige studie is die relatiewe grootte van die fenielring en die chloridoligand baie verskillend, met die gevolg dat wanorde in die pakkings langs hierdie asse baie onwaarskynlik is. Die langer Pt-As of Pt-Sb bindings neig ook na groter afwykings in die bindingshoeke in die Pt(II) koördinasiesfeer en maak dus wanordelike pakkings minder waarskynlik vir hierdie twee ligandsisteme in vergelyking met die ooreenstemmende fosfiensisteme. Die oënskynlike toename in simmetrie van die twee bonkige ligande in hierdie studie veroorsaak 'n toename in geneigdheid tot soortgelyke orientasie en manifesteer daarin dat beide die molekule in IIa en IIIa op tweevoudige rotasie-asse in die feniel-Pt(II)-Cl rigting kristalliseer.

Die dihidriese hoeke tussen die fenielringvlakke is effens geroteer relatief tot die Pt(II) koördinasievlak met waardes van 64.92(13)°, 87.3(7)° en 82.8(3)° onderskeidelik vir **IIa**, **IIIa** en **IVa**. Die groter afwyking vanaf 90° waargeneem in **IIa** is na alle waarskynlikheid 'n resultaat van die steriese druk soos ondervind deur die bonkige tersiêre ligandsisteme.

Dit is voorheen uitgewys dat in die struktuur van **IIa** die P-C binding van 1.807(3) Å na die ferrosenielgroep betekenisvol korter is as na die ander fenielringe, met lengtes van onderskeidelik 1.827(3) en 1.830(4) Å. (Otto en Roodt 2004) Die toename in die L-C bindingslengtes van *ca.* 1.83 tot 1.93 tot 2.13 Å vir L = P na As na Sb is onder andere ook as gevolg van die toename in die kovalente radii van die Groep 15 skenkeratome van onderskeidelik 1.100, 1.210 en 1.410 Å vir P, As en Sb is. (Sheldrick 2008).

Die twee siklopentadienielringe van die ferrosenielgroep is in 'n verduisterde konformasie, soos blyk uit die toepaslike torsiehoeke wat almal naby aan nul is. Dit is gevind dat die torsiehoek wat die relatiewe orientasie van die ferroseengroep beskryf, (Pt-P-C(31)-C(41) = $43.22(15)^{\circ}$) 'n betekenisvolle invloed op die konushoek van die fosfienligand het en word daarom ook hier rapporteer. Die effektiewe konushoek ($\theta_{\rm E}$) van die PPh₂Fc ligand is met behulp van die Tolmanmodel (Tolman 1977) as $\theta_{\rm E(1)} = 168.8^{\circ}$ bepaal. Die effektiewe konushoek ($\theta_{\rm E}$) van die AsPh₃ ligande is soortgelyk aan $\theta_{\rm E(1)} = 139.3^{\circ}$ en $\theta_{\rm E(2)} = 139.4^{\circ}$, vir As(1) en As(2) onderskeidelik bepaal, en is in goeie ooreenstemming met 145° vir PPh₃, terwyl die $\theta_{\rm E}$ waarde vir die SbPh₃ ligand [$\theta_{\rm E(1)} = 135.1^{\circ}$] die tendens voortsit.

In die algemeen is die relatiewe lang Pt-Cl bindingsafstande van 2.387(2) - 2.4574(18) Å *trans* tov die feniel- en gesubstitueerde fenielligande in ooreenstemming met die groter trans-invloed soos gemanifisteer in die ligande in Tabel 3, inherent aan die toenemende σ skenkerligande wat via die C-atoom bind. Die L-Pt-L bindingshoeke toon ook 'n tendens van korrelasie met die ligandgrootte: hoe groter die bonkigheid van die neutrale ligand, hoe nader is die hoek aan 180°.

Die Pt-C en Pt-L bindingsafstande soos gevind in hierdie studie val binne die erkende grense vir hierdie tipe bindings. Die Pt-Cl afstande van 2.408(5), 2.4575(18) en 2.387(2) Å vir die reeks komplekse trans-[PtPh(L)₂Cl] (L = PPh₂; AsPh₃ en SbPh₂) toon egter 'n onverwagte verlenging. 'n Betekenisvolle lang Pt-Cl bindingsafstand van 2.4575(18) Å is waargeneem in IIIa, wat toegeskryf word aan moontlike steriese interaksie tussen die chlorido- en die arsienligande aangesien die arsienligande in die rigting van die fenielligand verwring is (bindingshoek As-Pt-As =175.89(3)°). Die relatiewe kort Pt-Cl bindingsafstand van 2.387(2) Å in kompleks IVa word toegeskryf aan 'n kombinasie van die elektronarm metaalsentrum gekoppel aan die betekenisvolle verwringing van die kompleks, soos gemanifesteer in die Sb-Pt-Sb bindingshoek van net 173.728(17) °. Hierdie verwringing kan gekoppel word aan die lang Pt-Sb bindingsafstande van 2.5419(5) Å wat die SbPh₃ ligande toelaat om nader aanmekaar te beweeg sonder om betekenisvolle steriese interaksie met die chloridoligand hê.

Die struktuur van **IVb** toon verder ook 'n betekenisvolle afwyking van vierkantig-planêre geometrie met die fenielen die jodidoligande trans tov mekaar, soos verwag nadat die chloridoligand deur die jodido verplaas is. Die Sb-Pt-

TABEL 3: Vergelyking van die struktuurdata vir die *trans*-[PtPh(L),X] komplekse.

The probability of a structure of the 						
Kompleks	Pt-L (Å)	Pt-C (Å)	Pt-X (Å)	L-Pt-L (°)	Verw.	
trans-[PtPh(SMe ₂) ₂ Cl]	2.294(4)	1.99(1)	2.404(3)	171.38(5)	а	
trans-[PtPh(SMe,),Cl]	2.293(2)	2.004(5)	2.420(1)	178.50(2)	b	
trans-[Pt(mesityl)(SMe,),Cl]	2.292(2)	2.028(9)	2.423(3)	178.8(2)	С	
trans-[Pt(p-anisyl)(SMe,),Cl]	2.287(3)	2.033(8)	2.406(3)	173.9(3)	d	
trans-[PtPh(SEt,),Cl]	2.29(1)	2.05(4)	2.41(1)	172(1)	e	
trans-[PtPh(PPh ₃) ₂ Cl]	2.300(6)	2.00(2)	2.408(5)	176.0(2)	f	
trans-[Pt(p-OMe-Ph)(PPh ₃) ₂ Cl]	2.312(5)	2.01(1)	2.40(4)	173.7(1)	g	
trans-[Pt(o-Tol)(PEt ₃) ₂ Cl]	2.292(6)	2.05(1)	2.412(4)	176.9(2)	h	
trans-[PtPh(PPh,Fc),Cl]	2.3298(8)	2.022(4)	2.3988(12)	179.98(3)	TW	
trans-[PtPh(AsPh ₃),Cl]	2.3986(8)	2.042(8)	2.4575(18)	175.92(3)	TW	
trans-[PtPh(SbPh ₃) ₂ Cl]	2.5419(5)	2.018(6)	2.387(2)	173.728(17)	TW	
trans-[PtPh(SMe,),Cl]	2.294(4)	1.99(1)	2.404(3)	171.38(5)	i	
trans-[PtPh(SbPh_)_I]	2.5419(5)	2.018(6)	2.387(2)	173.728(17)	TW	

a = (Kapoor, et al. 1996) b = (Kapoor, et al. 1996) c = (Wendt, Oskarsson, et al. 1997) d = (Wendt, Oskarsson, et al. 1997) e = (Wendt, Oskarsson, et al. 1997) f = (Conzelmann, et al. 1984) g = (Khanna, et al. 1995) h = (Rieger, Carpenter en Rieger 1993) i = (Wendt, Oskarsson, et al. 1997) TW = hierdie werk

Sb' bindingshoek van slegs $160.501(13)^\circ$ is baie ongewoon en is 'n aanduiding van 'n baie elektronarm metaalsentrum. Stibienligande is bekend daarvoor om vyfgekoördineerde komplekse met d^8 metaalsentra te vorm ten einde die elektroniese vereistes van hierdie tipe komplekse te vervul. (Roodt, Otto en Steyl 2003). Die Pt-I bindingsafstand vergelyk goed met ander voorbeelde in die literatuur. (Allen 2002)

Kinetika

In 'n poging om die oplossingbydrae sover moontlik te verminder is die studie spesifiek in nie-koördinerende, nie-polêre oplosmiddels ondersoek. Ongelukkig het dit in swak oplosbaarhede van die komplekse gemanifesteer, wat die oplosmiddelmoontlikhede beperk het tot benseen, chloroform en dichloormetaan. Terselfdertyd het die keuse van moontlike inkomende nukleofiele dit ook beperk. Die enigste moontlikhede was gevolglik soute van groot nie-polêre organiese entiteite soos Bu_4N^+ en PPh_4^+ , sowel as piridien en gesubstitueerde variasies daarvan soos 4-Brpiridien, 4-Me-piridien en 4-dimetielaminopiridien. Hierdie ligande is almal voorlopig as inkomende nukleofiele geëvalueer.

Soos vroeër aangedui is die vloeistofuitgangstowwe wat kineties bestudeer is met *Arabiese nommers* **1-4** aangedui, terwyl die verwysing na komplekse in die literatuur as **5-10** aangedui word, soos hieronder bespreek.

Tydens die voorlopige evaluasie van die platinumkomplekse met piridien en die afgeleides daarvan is daar egter gevind dat verplasing van beide die As- en die Sb-ligande ook plaasgevind het. Aangesien die primêre mikpunt van hierdie studie was om slegs die chloridosubstitusie te ondersoek, het laasgenoemde die gebruik van die piridienligande gevolglik uitgeskakel. Die molêre absorbansies van die PPh₄⁺ en AsPh₄⁺ katioonsoute was baie hoog en het die akkuraatheid om wisselende ligandkonsentrasies te gebruik, drasties beinvloed en kon nie verder bestudeer word nie. Daaropvolgende stabilititeitstoetse van Bu₄NI, Bu₄NSCN (stadige ontbinding) en Et₄NBr (baie higroskopies) het die inkomende ligand gevolglik tot Bu₄NI beperk Die kristalstruktuur van trans-[PtPh(PPh₂)₂(NCS)] is voorheen gepubliseer in 'n voorlopige studie en het bevestig dat die inkomende ligand as 'n isotiosianaat (N-gebonde) entiteit geklassifiseer kan word, wat ook die steriese beperking op die metaalsentrum illustreer. (Otto en Roodt 2005).

Die komplekse in hierdie studie is almal eenduidig deur middel van enkelkristal X-straalkristallografie, sowel as multikern magnetiese resonansspektroskopie gekarakteriseer. ¹H, ³¹P en ¹⁹⁵Pt KMR is soos benodig gebruik, en het bevestig dat slegs die chloridoligand deur jodiedione verplaas is gedurende die eerste (en enigste) reaksie waargeneem. In enkele gevalle het die analoë *trans*-[PtMe(L)₂Cl] komplekse na 'n paar dae die oreenstemmende *trans*-[Pt(I)₂(L)₂] gelewer. Dit is byvoorbeeld ook rapporteer dat die *trans*-[Pt(I)₂(AsPh₃)₂] vanaf die reaksie tussen *trans*- [PtMe(AsPh₃)₂Cl] en Bu₄NI vanuit chloroform geïsoleer is. Hierdie verskynsel is identifiseer as 'n potensiële probleem vir die stadige reaksies (spesifiek die van die *trans*-[PtPh(L)₂Cl] (L = PPh₃ en PPh₂Fc). Dit was egter met behulp van ³¹P KMR versigtig geëvalueer en eksperimentele kondisies is sodanig gekies dat die moontlike oksidatiewe addisie na die ooreenstemmende Pt(IV) komplekse weglaatbaar klein was. Die addisionele steriese vereiste van die betrokke PPh₃ en PPh₂Fc, gekoppel met die fenielgroep (hierdie studie) in vergelyking met die genoemde ooreenstemmende metielkomplekse (literatuur), het 'n verdere afname in die ewewigskonstante tot gevolg, wat tot gevolg het dat die moontlike omskakeling na die Pt(IV) verder beperk is.

Vgl. 1 is deurgaans gebruik om die kinetiese resultate wat in hierdie studie versamel is, te interpreteer, waar die waargenome pseudo eersteordetempokonstantes soos bepaal, duidelik daardeur voldoende en volledig beskryf word. (sien Fig. 3 en 4.) Dit is egter baie duidelik dat die konsentrasie van die chloridoligand wat verplaas word, onder die ewewigskondisies soos in hierdie studie beskryf, 'n betekenisvolle en belangrike (onmisbare) bydrae tot die totale reaksieprofiel maak. Dit is dus *krities* om dit in alle passings in te sluit en spesifiek in *oormaat* (pseudo eersteordekondisies) daarin in ag te neem. Volledige wisseling van [Cl⁻] is egter nie as deel van hierdie ondersoek beskou nie, alhoewel dit belangrik is om dit as 'n toekomstige studie te oorweeg.

Die ewewigskonstantes vir die reaksies in hierdie studie kon ongelukkig nie met behulp van standaard spektrofotometriese tegnieke bestudeer word nie as gevolg van die reeds gemelde hoë molêre absorpsiekoëffesiënte van die inkomende ligand, Bu₄NI. Dit kon egter heel suksesvol met KMR gedoen word, sien Tabel 4; veral ³¹P KMR vir die *trans*-[PtPh(L)₂Cl] (L = PPh₃ en PPh₂Fc) komplekse, ten spyte van die feit dat die standaardafwykings van sommige in die orde van 15% was.

FIGUUR 3: [I[:]] afhanklikheid van die waargenome pseudo eersteordetempokonstante (logaritmiese skaal) vir die *trans*-[PtPh(L),2[] komplekse in chloroform by 40 °C, en gepaardgaande illustrasie van die betekenisvolle verandering in reaktiwiteit asook die reaksieprofiel. Die komplekse is soos volg: *trans*-[PtPh(L),Cl] (L = PPh₃, **1**; PPh₃Fc, **2**; AsPh₃, **3**; SbPh₃, **4**).

Kompleks	K _{eq}	10 ³ k ₁₂	10 ³ k ₁₃	10 ⁴ k' ₁₃ "	k_{32}/k_{31}	δ(Pt)
		(M ⁻¹ s ⁻¹)	(S ⁻¹)	(M ⁻¹ s ⁻¹)		(dpm)
1	0.6 ± 0.1	0.37 ± 0.03	0.066 ± 0.003	0.053 ± 0.002	0.103 ± 0.018	-4377
2	0.1 ± 0.1	-0.67 ± 0.14*	0.20 ± 0.02	0.160 ± 0.016	0.5 ± 0.3	-4300
3	1.2 ± 0.3	11.6 ± 0.9	1.0 ± 0.2	0.80 ± 0.16	0.50 ± 0.13	-4316
4	0.6 ± 0.1	280 ± 30	181 ± 4	145 ± 0.003	0.264 ± 0.009	-4136

TABEL 4: Ewewigs-, eersteordetempo- en tweedeordetempokonstantes vir die reaksies van die trans-[PtPh(L)₂Cl] komplekse met Bu₄NI in chloroform by 40 °C. Die komplekse is soos volg: trans-[PtPh(L)₂Cl] (L = PPh₂, **1**; PPh₂Fc, **2**; AsPh₂, **3**; SbPh₃, **4**).

[#]k'₁₃=k₁₃/[12.5 M (CHCl₃)]; * Sien Teks

'n Grafiese voorstelling van die reaksietempoverwantskappe van die verskillende *trans*-[PtPh(L)₂Cl] komplekse met Bu₄NI in chloroform by 40 °C word in Fig. 3 geillustreer, terwyl die individuele waardes in Tabel 4 aangegee word.

Die pseudo eersteordetempokonstantes van die reaksies is gestip op logaritmiese skaal (Fig. 3) ten einde die groot veranderings te illustreer. Dit is duidelik vanuit Tabel 4 en Fig. 3 dat die reeks (groot na klein) vir die *trans*-[PtPh(L)₂Cl] komplekse soos volg is: L = SbPh₃ > AsPh₃ > PPh₂Fc \approx PPh₃. 'n Betekenisvolle relatiewe reaktiwiteitsreeks van ongeveer *vier ordegroottes* is waargeneem (Fig. 3). Dit is ook opmerklik dat al die illustrasies beperkende kinetika toon; 'n aanduiding dat die ewewigte 'n belangrike bydrae maak tot die totale reaksieprofiel, veral by lae [I⁻]. Hierdie is soortgelyk aan dit waargeneem vir die *trans*-[PtH(L)₂Cl] en *trans*-[PtMe(L)₂Cl] soos vroeër beskryf (Otto, Botha en Roodt 2018).

Die twee fosfienbevattende komplekse (1 en 2) toon vergelykbare reaktiwiteite terwyl die arsien (3) en stibien (4) komplekse betekenisvol meer reaktief is. Die reaksies van 1 en 2 was baie stadig en is gevolglik in afwesigheid van bygevoegde chloriedione bestudeer. As gevolg hiervan is die tempokonstantes bereken deur die [Cl-] in Vgl. 1 dieselfde as die [Pt] (0.25 of 2.5 mmol dm⁻³) te hou en die waardes van K_{ea} soos bepaal met behulp van ³¹P KMR by 40 °C. In die geval van 3 en 4 is die waardes van die ewewigskonstantes eers bepaal deur dit tesame met die ander konstantes in die kleinste kwadratepassings te pas, en dit daarna konstant te hou, ten einde meer akkurate waardes vir die ander konstantes te verkry. Dit is bevind dat die k_{12} roete vinniger as die k_{13} roete vir 1, 3 en 4 (L = PPh₃, AsPh₃ en SbPh₃) is, maar dit was nie die geval vir die meer steries-bonkige kompleks 2 (L = PPh,Fc) nie, waar die oplosmiddelpad die roete van keuse was. Die aanvanklike omgekeerde verwantskap van die tempo op die [I-] in 2 is duidelik; waarskynlik as gevolg van die groot steriese bonkigheid van die ferrosenielgroep, wat dan ook die oplosmiddelroete by hoër [I⁻] onderdruk. Gedurende die passing van die kinetiese data vir 2 het pogings om die waarde van $k_{12} = 0$ konstant te hou, nie aanvaarbare kleinstekwadratepassings gelewer nie. Dit is gevolglik toegelaat om na 'n effense negatiewe waarde te konvergeer. Die feit dat betekenisvolle hoër metaalkonsentrasie tydens die KMR eksperimente genoodsaak is, kon die jodiedkonsentrasie nie verlaag word om die profiel meer volledig te beskryf nie.

Die waarneming dat kompleks 4 meer reaktief as die ander is kan toegeskryf word aan die betekenisvolle meer elektronarme metaalsentrum (baie kort Pt-Cl bindingsafstand van 2.387(2) Å) tesame met die feit dat dit baie meer toeganklik is as gevolg van die betekenisvolle langer Pt-Sb bindingsafstand van 2.5419(5) Å soos waargeneem vanuit die molekulêre strukture van IVa en IVb (Fig. 2). Dit is ook aangedui dat die konuskoek van die SbPh, ligand, bepaal as 138°, betekenisvol kleiner is as die van die ooreenstemmende fosfien- en arsienligande (onderskeidelik 173° en 146° vir PPh₂Fc en AsPh₂), sien Tabel 2. Dit is verder selfs beter geïllustreer deur die betekenisvolle toename in die interatoomafstande L1-L2 te beskou, wat onderskeidelik toeneem van 4.660(1) tot 4.794(1) tot 5.080(1) Å vir IIa, IIIa en IVa, en duidelik die Pt(II)-sentrum in 4 baie meer toeganklik maak vir nukleofiele aanval as in 3, en spesifiek meer as in 2 en 1.

FIGUUR 4: Temperatuur- en jodiedkonsentrasie-afhanklikhed van die pseudo eersteorde-tempokonstantes vir komplekse (a) 3 en (b) 4.

FIGUUR 5: Eyringgrafieke vir (a) k_{12} en (b) k_{13} tempokonstantes vir **3** en **4** in chloroform.

Die [I⁻] en temperatuurafhanklikheid vir die pseudo eersteordetempokonstantes vir komplekse **3** en **4** word in Fig. 4 aangetoon. Dit is duidelik dat die grafieke in Fig. 4 by hoër [I⁻] vereenvoudig kan word om aan die meer algemene tweeterm tempowet vir vierkantig-planêre substitusiereaksies (Vgl. 3) te voldoen.

Die temperatuurafhanklikheid van die reaksies van **3** en **4** word deur die grafiese voorstellings in die Eyringvergelyking in Fig. 5(a) vir k_{12} , en Fig. 5(b) vir die k'_{13} reaksieroetes onderskeidelik geillustreer, met die individuele aktiveringsparameters soos daarvolgens bepaal, aangegee in Tabel 5.

Die aktiveringsparameters toon in die algemeen die gewone assosiatiewe aktivering wat aanvaar word vir hierdie tipe komplekse, met groot negatiewe ΔS^{\neq} waardes vir beide die direkte asook die oplosmiddelroetes. Die uitsondering is die ΔS^{\neq} waarde van $36 \pm 2 \text{ J K}^{-1} \text{ mol}^{-1}$ vir die k_{12} roete vir **3**. Dit is interessant dat alhoewel die aktiveringsentropie positief vir die k_{12} gevind is, die k'_{13} oplosmiddelroete steeds 'n betekenisvolle negatiewe waarde toon. Die ΔS^{\neq} aktiveringsparameters vir die ander komplekse toon k_{12} en k'_{13} waardes van -157 ± 4 tot -207 ± 4 J K⁻¹ mol⁻¹, met die ΔS^{\neq} waardes vir die k'_{13} roete altyd groter as vir die k_{12} roete. Dit is belangrik om daarop te let dat indien die buitengewone lang Pt-Cl bindingsafstand van 2.4575(18) Å wat in **3** waargeneem is, in teenstelling

FIGUUR 6: Grafieke van tweedeordetempokonstantes ($k_{12} = gevulde$ simbole, en $k'_{13} = ongevulde$ simbole, waar $k'_{13} = k_{13}/[12.5 \text{ M} (CHCl_3)]$) by 25 °C vs. ¹⁹⁵Pt chemiese verskuiwing, $\delta^{(195)}$ Pt): (a) Alle feniel-, metiel- en hydriedkomplekse van die vorm *trans*-[PtR(YX_3)_2Cl] soos in Tabel 10 gelys, met Y=P, As of Sb as skenkeratoom; X=mono-anioniese alkiel- of arielsubstituent; R⁻ = (i) Ph, (ii) CH₃ en (iii) H. Die skenkeratome Y in die komplekse is onderskeidelik aangedui in groen (SbPh_3), blou (PX_3) en rooi (AsX_3); (b) PPh_3 komplekse vir R⁻ = Ph, CH₃, en H; (c) YPh₃ komplekse vir Y=P, As en Sb.

TABEL 5: Aktiveringsparameters soos bepaal deur die eksponensiële vorm vandie Eyringvergelyking vir 3 and 4 met Bu_4 NI in chloroform.

	I	K ₁₂	k ₁₃		
Kompleks	ΔH^{\neq}	ΔS^{\neq}	ΔH^{\neq}	ΔS^{\neq}	
	(kJ mol ⁻¹)	(J K ⁻¹ mol ⁻¹)	(kJ mol ⁻¹)	(J K ⁻¹ mol ⁻¹)	
3	99.8 ± 0.6	36 ± 2	45 ± 2	-181 ± 7	
4	31 ± 1	-157 ± 4	22.91 ± 0.11	-207.3 ± 0.4	

No.	Grense ^{a)}	Kompleks	$10^{3}k_{12}$	10 ⁴ k' ₁₃	δ(¹⁹⁵ Pt)
			(M ⁻¹ s ⁻¹)	(M ⁻¹ s ⁻¹)	(dpm)
1		trans-[PtPh(PPh ₃) ₂ Cl] ^{b)}	0.14 ± 0.03	0.025 ± 0.003	-4377
2	(i)	trans-[PtPh(PPh2Fc)2Cl] b)	0.2	0.075 ± 0.005	-4300
3		trans-[PtPh(AsPh ₃),Cl]	1.6 ± 0.3	0.33 ± 0.05	-4316
4		trans-[PtPh(SbPh ₃) ₂ Cl]	143 ± 10	88.4 ± 1.1	-4136
5		trans-[PtMe{P(NMe ₂) ₃ } ₂ Cl]	13.89 ± 0.16	0.9936 ± 0.0012	-4277
6		trans-[PtMe(PPh2Fc)2Cl]	0	0.317 ± 0.010	-4575
7	(ii)	trans-[PtMe(AsPh ₃) ₂ Cl]	0.2 ± 0.4	8.3 ± 0.8	-4608
8		trans-[PtMe{As(p-Tol) ₃ } ₂ Cl]	2.79 ± 0.04	0.42 ± 0.03	-4611
9		trans-[PtMe(PPh ₃) ₂ Cl]	0.091 ± 0.010	0.203 ± 0.010	-4646
10	(iii)	trans-[PtH(PPh ₂),Cl]	0	62.2 ± 0.4	-4858

TABEL 6: Tempokonstantes vir verwante komplekse in chloroform by 25°C as 'n funksie van die 195Pt chemiese verskuiwing, δ (195Pt).

a) Soos aangedui in Fig. 6(a); b) Geskatte waardes vanaf data by 40 °C deur aan te neem dat die tempo's ongeveer halveer vir elke 10 °C afname in temperatuur

met die kort 2.387(2) Å soos in 4 beskou word, dit duidelik is dat 4 beide steries *minder* bonkig sowel as *elektronarm* is. Beide hierdie eienskappe sal na verwagting 'n assosiatiewe aktivering (meer gestruktureerde oorgangstoestand) in substitusiereaksies bevoordeel.

Tabel 6 toon die tempokonstantes vir beide die direkte (k_{12}) en oplosmiddelroetes $(k_{13'})$ as 'n funksie van die ¹⁹⁵Pt chemiese verskuiwings. Die chemiese verskuiwing vir 'n spesifieke kern gee 'n aanduiding van die elektroniese omgewing daarvan en dit is dus te verwagte dat daar 'n breë korrelasie met die reaktiwiteit van die metaalkern kan wees. Fig. 6 illustreer grafieke van die eerste- en tweede-ordetempokonstantes teen die ¹⁹⁵Pt chemiese verskuiwing in die algemeen maar ook in die meer *analoë* reekse.

In die algemeen is daar geen duidelike verwantskap tussen $\delta(^{195}\text{Pt})$ en die reaktiwiteit van die *trans*-[PtR(YX₃)₂Cl] komplekse soos in Fig. 6a geillustreer, waarneembaar nie. Die fenielkomplekse (sien (i)) is egter duidelik tussen -4000 tot -4500 dpm gegroepeer, die metielkomplekse van -4500 tot ca. -4800 dpm (sien (ii)), en die hidriedkompleks by -4810 dpm (sien (iii)). Alhoewel die data nie oortuig nie en 'n groter statistiese monster benodig word, is daar tog 'n tendens wat 'n moontlike verwantskap aandui.

Wanneer die data egter vir individuele komplekse analiseer word, is daar 'n meer duidelike korrelasie waarneembaar binne 'n *spesifieke analoë* reeks. In Fig. 6b is die reaktiwiteit teen die δ (¹⁹⁵Pt) waardes vir die *trans*-[PtPh(YPh₃)₂Cl] (Y = P; As and Sb) komplekse gestip, en toon 'n daadwerklike tendens, met 'n afname in reaktiwiteit met 'n verskuiwing van δ (¹⁹⁵Pt) na 'n hoër veld; algemeen geassosieer met 'n toename in elektroniese skerming. Hierdie is in ooreeenstemming met die aanname dat 'n assosiatiewe aktivering bevoordeel sal word indien die metaalsentrum meer elekronarm is. 'n Verdere interessante waarneming is die toename in die *verskil* tussen die k_{12} en k_{13} met 'n toename in elektroniese skerming van die Pt(II), wat op 'n groter diskriminasievermoë van die metaal dui wanneer dit minder elektronarm word.

Soortgelyk, in Fig. 6c word die komplekse van die algemene vorm, *trans*-[PtR(PPh₃)₂Cl] (R⁻ = CH₃⁻, H⁻ and Ph⁻) as funksie van δ (¹⁹⁵Pt) aangedui. Slegs die $k_{13'}$ waarde vir die hidriedkompleks word aangedui aangesien die k_{12} soos

hierbo gemotiveer, konstant op nul vasgehou is. 'n Belanrike waarneming van hierdie figuur is dat 'n toename in tempokonstante gepaardgaan met die elektroniese skerming van die Pt(II) metaalsentrum. Dit is teenstellend met dit wat verwag word en dui daarop dat die steriese bonkigheid van die komplekse moontlik 'n belangrike rol, soos inderdaad hierbo uitgewys, vertolk, en afneem met Ph > Me > H.

Opsomming en gevolgtrekkings

'n Goeie korrelasie is gevind deur die resultate van die kinetiese studie met dit bekend in die literatuur, te vergelyk. Baie gerapporteerde studies is egter in metanol (koördinerende entiteit) as oplosmiddel gedoen en op komplekse met *cis*-ligande wat betekenisvolle kleiner steriese bonkigheid vertoon. Die ligand PEt₃ is redelik wyd bestudeer. In komplekse van die vorm *trans*-[PtR(L)₂X] (R = hydrido, alkiel en ariel; L = PEt₃, SMe₂ en SEt₂) is 'n afname in reaktiwiteit waargeneem met 'n toename in steriese bonkigheid op gesubstitueerde fenielgroepe as R-ligande. (Cusumano, et al. 1979) (Ricevuto, Romeo en Trozzi 1974) (Faraone, et al. 1974). Die reaktiwiteit het 'n betekenisvolle afname in die orde hydried > alkiel > ariel getoon, maar die normale assosiatiewe meganisme was steeds van toepassing.

'n Studie (Wendt en Elding 1997) op komplekse van die vorm [Pt(I)₃L]⁻ (L = PPh₃ en SbPh₃) het getoon dat die stibienligand 'n meer betekenisvolle trans-effek toon as die ooreenstemmende fosfien. Die enkelkristalstukture van die twee komplekse het egter getoon dat die stibienligand 'n kleiner *trans*-invloed openbaar, sodat die toename in reaktiwiteit te wyte aan die stabilisering van die oorgangstoestand moet wees, dws die groter *trans*-effek. Hierdie resultate ondersteun gevolglik die aanname dat die SbPh₃ ligand 'n beter π ontvanger as PPh₃ is, wat saam gesien met die laer steriese bonkigheid daarvan, in ooreenstemming is met die gevolgtrekking van ons studie soos hier gerapporteer.

'n Algemene aanname onder chemici is dikwels dat substitusiegedrag van vierkantig-planêre komplekse eenvoudig is en alles maklik verstaanbaar is. Dit word sodanig in menige handboeke gereflekteer, wat verskeie voorbeelde illustreer om die *cis*- en die *trans*-effekte te verduidelik.

Ons het met hierdie ondersoek 'n reeks iso-elektroniese komplekse ondersoek en getoon dat redelike korreleasie met verskillende parameters moontlik is. Hierdie studie ondertreep egter die feit dat die nodige versigtigheid aan die dag gelê moet word aangesien sekere sisteme *betekenisvol* meer kompleks kan wees. Tipies, vergrote katalitiese siklusse of ander toepaslike reaksiestappe in die industrie, waarin baie soortgelyke reaksies as wat hierin beskryf is, van toepassing is, moet versigtig hanteer en interpreteer word. Die belangrikheid van 'n kennis van beide die *strukture* sowel as die *reaktiwiteit*, en *verwantskappe* daarin moet in aanmerking geneem word ten einde 'n *volledige* reaksiemeganisme daar te stel.

Erkenning

Finansiële ondersteuning van die Sentrale Navorsingsfonds van die Universiteit van die Vrystaat, SASOL en die TRHIP program van die Suid-Afrikaanse Navorsingstigting (SA NRF), asook die Universiteit van Lund in Swede en die "Swedish International Links Programme" (SIDA), word met dank erken. Die SA NRF (UID 107802 en UID 111698) asook die Switserse NSF onder die SSAJRP program, word spesifiek bedank vir hul voortgesette steun. Enige opinie, bevinding, gevolgtrekking of aanbeveling van hierdie studie is die van die skrywers en reflekteer nie noodwendig die van die SA NRF nie.

Skywerbydraes

SO het die praktiese werk gedoen en het die eerste manuskrip saamgestel. OTA het met die kristallografie en addisionele veranderings gehelp terwyl AR as toesighouer opgetree het vir die studie en die finale manuskrip geskryf en verwerk het.

Verwysings

- Alibrandi G, Scolaro LM, Romeo R. 1991. A new reaction pathway for the Geometrical Isomerization of Monoalkyl Complexes of Platinum(II) and Kinetic Behavior of cis-[Pt(PEt3)2(neopentyl)Cl]. *Inorganic Chemistry* 30: 4007-4013.
- Alibrandi G, Cusumano M, Minnitti D, Scolaro LM, Romeo R. 1989. Competitive uncatalyzed geometrical isomerization and beta-hydride elimination of alkyl complexes of platinum(II). *Inorg Chem* 28: 342-347.
- Allen FH. 2002. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Cambridge Structural Database, Version XX, XX 2011/12 update. B58: 380-388.
- Baddley WH, Basolo F. 1966. Preparation and kinetic study of some sterically hindered palladium (II) complexes. J Am Chem Soc 88: 2944-2950.
- Berger J, Kotowski M, Van Eldik R, Frey U, Helm L, Merbach AE. 1989. Kinetics and mechanism of solvent-exchange and anation reactions of sterically hindered diethylenetriamine complexes of palladium(II) in aqueous solution. *Inorg Chem* 28: 3759-3765.
- Brandenburg K. 1998. DIAMOND Version 2.1. Bonn, Germany.: Crystal Impact.
- Bruker-AXS-Inc. 2007. Bruker SAINT-Plus and SADABS. Madison, Wisconsin, USA.
- Bugarčić ŽD, Bogojeski J, Petrović B, Hochreuther ZDS, Van Eldik R. 2012. Mechanistic studies on the reactions of platinum (II) complexes with nitrogen-and sulfurdonor biomolecules. *Dalton Trans* 41: 12329-12345.
- Chatt J, Shaw BL. 1959. Alkyls and aryls of transition metals; Part I; Complex methylplatinum(II) derivatives. J Chem Soc 705-716.
- Chatt J, Vallarino LM, Venanzi LM. 1957. Olefin coordination compounds. Part IV. Diene complexes of platinum(II). The structure of Hofmann and van Narbutt's [Dicyclopentadiene(RO)PtCI]. J Chem Soc 2496-2505.

- Conzelmann W, Koola JD, Kunze U, Strähle J. 1984. Molecular structure of transchloro(n1-phenyl)-bis(triphenylphosphine)platinum(II). *Inorg Chim Acta* 89: 147-149.
- Crespo M, Martinez M, NabavizadehS M, Rashidi M. 2014. Kineticomechanistic studies on CX (X = H, F, Cl, Br, I) bond activation reactions on organoplatinum(II) complexes. *Coord Chem Rev* 279: 115-140.
- Cusumano M, Marricchi R, Romeo R, Ricevuto V, Belluco U. 1979. Displacement of chloride under the trans-effect of strong σ-donor groups in Pt(II) complexes. Inorg Chim Acta 34: 169-174.
- De Waal DJA, Robb W. 1978. Experimental evidence for a more complete rate law for nucleophilic substitution at square planar metal complex centers. Kinetics and mechanism of ligand replacement in the complex cycloocta-1,5-dienetricy clohexylphosphinechlororhodium(I). *Inorg Chim Acta* 26: 91-96.
- Elding LI, Kellenberger B, Venanzi LM. 1983. Transition metal complexes with bidentate ligands spanning trans-positions. XII¹. Steric effects in the kinetics and mechanism of substitutions at hydride and methyl bisphosphine platinum (II) complexes. *Helv Chim Acta* 66: 1676-1690.
- Elding LI, Gröning A-B. 1980. Solvent paths for square-planar substitutions. Part 2. Reactions between aqua chloroplatinates (II) and ethane. *Inorg Chim Acta* 38: 59-66.
- Faraone G, Ricevuto V, Romeo R, Trozzi M. 1974. Steric effects in substitution reactions of cis- and trans-arylchlorobis-(triethylphosphine) platinum(II) complexes: new kinetic data for the approach to the problem of transitionstate geometry. J Chem Soc Dalton Trans 1377-1380.
- Frey U, Helm L, Merbach AE, Romeo R. 1989. Dissociative substitution in fourcoordinate planar platinum(II) complexes as evidenced by variable-pressure high-resolution proton NMR magnetization transfer experiments. J Am Chem Soc 111: 8161-8165.
- Goddard JB, Basolo F. 1968. Rates and mechanism of substitution reactions of sterically hindered palladium (II) complexes. *Inorg Chem* 7: 936-943.
- Khanna A, Khandelwal BL, Saxena AK, Singh TP. 1995. Dichloromethane assisted oxidation of Pt(O) via cleavage of Te=C bond of an asymmetric telluride leading to the formation of trans-[PtCl(Ar)(PPh3)2]. Polyhedron 14:2705-2710.
- Kubota M, Rothrock RK, Kernan MR, Haven BR. 1982. Rearrangement of alkyl- and arylsulfi nato-S to alkyl- and arylsulfinato-O,O' complexes of platinum(II). Barrier to desulfonylation. *Inorg Chem* 21: 2491-2493.
- Kukushkin VY, Lövqvist K, Norén B, Oskarsson Å, Elding LI. 1992. Phenylation of Platinum(II) thioether complexes by tetraphenylborate(III) in solid state and nitromethane solution. *Phosphorous, Sulfur and Silicon* 73: 253-255.
- MicroMath. 1990. Scientist for Windows, Least-squares Parameter Estimation, Version 4.00.950.
- Minnitti D, Alibrandi G, Tobe ML, Romeo R. 1987. Dissociative substitution in fourcoordinate planar platinum(II) complexes. 3. Kinetics of the displacement of sulfur donors from cis-Dimethylbis(dimethyl sulfoxide)- and cis-Dimethylbis(dimethyl sulfide)platinum(II) by bidentate ligands. *Inorg Chem* 26: 3956-3960.
- OLIS. n.d. On-Line Instrument-Systems Inc. Jefferson, Ga 30549.
- OK o, S., A. Roodt, and J. G. Leipoldt. 1995. Structural trans eff ect in trans-[PtMeX(PPh3)2] complexes: a comparative 1H NMR study and the crystal structure of trans-[PtMeCl(PPh3)2]. S.A. J. Chem. 48 (3-4): 114-116.
- Otto S, Roodt A. 2002b. Equilibrium, solid state behavior and reactions of four and five co-ordinate carbonyl stibine complexes of rhodium. Crystal Structures of trans-[Rh(Cl)(CO)(SbPh3)2], trans-[Rh(Cl)(CO)(SbPh3)3] and trans-[Rh(I)2(CH3) (CO)(SbPh3)2]. Inorg Chim Acta 331: 199-207.
- Otto S, Roodt A. 2004. Quantifying the electronic cis effect of phosphine, arsine and stibine ligands by use of rhodium(I) Vaska-type complexes. *Inorg Chim Acta* 357: 1-10.
- Otto S, Roodt A. 2006. Reactivity studies of trans-[PtClMe(SMe2)2] towards anionic and neutral ligand substitution processes. *J. Organomet Chem.* 691:4626-4632.
- Otto S, Roodt A. 2008. Solvent induced oxidative addition and phenyl migration in trans-[RhCl(CO)(SbPh3)3]: Crystal structure of trans-mer-[Rh(Cl)2(Ph) (SbPh3)3]. Inorg Chem Commun. 11: 114-116.
- Otto S, Roodt A. 2005. Structure of trans-(Isothiocyanato-jN)phenylbis (triphenylphosphine-P)platinum(II). Acta Cryst E61: m1545-1547.
- Otto S, Roodt A. 2002a. trans-Carbonyliodotris(triphenylstibine-[kappa]Sb) rhodium(I). Acta Cryst C58: m565-m566.
- Otto S, Botha E, Roodt A. 2018. Structure and reactivity relationships in methyl and hydrido complexes of platinum (II) by Group 15 donor atom ligands. *Croatica Chemica Acta* 91: 265–279.
- Palmer DA, Schmidt R, Van Eldik R, Kelm H. 1978. Temperature and pressure dependencies of the anation of Pd(MeEt4dien)OH2+2 by chloride ion in acidic aqueous solution. A mixing system for studying the kinetics of moderately fast reactions under pressure. *Inorg Chim Acta* 29: 261-265.

- Palmer DA, Kelm H. 1975. Evidence for a dual mechanisms in reactions of [Pd (Et4dien) X]+ complexes. *Inorg Chim Acta* 14: L27-L29.
- Pienaar JJ, Kotowski M, Van Eldik R. 1989. Volume profiles for solvolysis reactions of sterically hindered diethylenetriamine complexes of palladium (II) in aqueous solution. *Inorg Chem* 28: 373-375.
- Plutino MR, Otto S, Roodt A, Elding LI. 1999. Reaction mechanism for olefin exchange at chloro ethene complexes of platinum(II). *Inorg Chem* 38: 1233-1238.
- Pope WJ, Peachey SJ. 1907. A new class of organo-metallic compounds. Preliminary notice. Trimethyl Platini Methyl hydroxide and its salts. *Proc Chem Soc* 23: 86-87.
- Ricevuto V, Romeo R, Trozzi M. 1974. Kinetics and mechanism of replacement of chloride ion in trans-chloro-(o-tolyl)bis(triethylphosphine) platinum(II) by substituted pyridine compounds: influence of the basicity and steric hindrance of the pyridines on their reactivity. J Chem Soc Dalton Trans 1974, 927-929. 927-929.
- Rieger AL, Carpenter GB, Rieger PH. 1993. Platinum-195 NMR and structural studies of platinum(II) o-tolyl and mesityl complexes. *Organometallics* 12: 842-847.
- Romeo R, Alibrandi G, Scolaro LM. 1993. Kinetic study of beta-hydride elimination from monoalkyl solvento complexes of platinum(II). *Inorg Chem* 32: 4688-4694.
- Romeo R, Grassi A, Scolaro LM. 1992. Factors affecting reaction pathways in nucleophilic substitution reactions on platinum(II) complexes: A comparative kinetic and theoretical study. *Inorg Chem* 4383-4390.
- Roodt A, Visser HG, Brink A. 2011. Structure/reactivity relationships and mechanism from X-ray data and spectroscopic kinetic analysis. *Crystallography Reviews* 17: 241-280.

- Roodt A, Otto S, Steyl G. 2003. Structure & solution behaviour of rhodium(I) Vaskatype complexes for correlation of steric & electronic properties of tertiary phosphine ligands. *Coordination Chemistry Reviews* 245: 125-142.
- Roulet R, Gray HB. 1972. Mechanisms of substitution reactions of axially blocked palladium (II) complexes in different solvents . *Inorg Chem* 11: 2101-2104.
- Scott JD, Puddephatt RJ. 1983. Ligand dissociation as a preliminary step in methylfor-halogen exchange reactions of platinum(II) complexes. Organometallics 2: 1643-1648.
- Seguin J-Y, Zador M. 1976. Kinetics of interaction of [Pd(dien)Br] + with inosine. Inorg Chim Acta20: 203-206.
- Sheldrick GM. 2008. SHELX: Programme for solving crystal structures. Acta Crysta A64: 112-125.
- Sollot GP, Mertway HE, Portnoy S, Snead JL. 1963. Unsymmetrical tertiary phosphines of ferrocene by Friedel-Crafts Rreactions. I. Ferrocenylphenylphosphines. J Org Chem 28: 1090-1092.
- Tolman CA. 1977. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. *Chemistry Reviews* 77: 313-348.
- Van Eldik R, Palmer DA, Schmidt R, Kelm H. 1981. Volumes of activation for the anation of Pd(II) substituted dien complexes by chloride ion in aqueous solution. A high pressure stopped-flow instrument for studying the kinetics of fast reactions under pressure. *Inorg Chim ActaSo*: 131-135.
- Wendt OF, Oskarsson Å, Leipoldt JG, Elding LI. 1997. Synthesis, structure, and reactivity of Arylchlorobis(dialkyl sulfide)platinum(II) Complexes. *Inorg Chem* 36: 4514-4519.
- Wendt OF, Elding Ll. 1997. trans Effect and trans influence of triphenyls tibine and -phosphine in platinum(II) complexes. A comparative mechanistic and structural study. J Chem Soc Dalton Trans 4725-4732.

Elektroniese Aanvullende Inligting:

Waargenome struktuur- en reaktiwiteitsverwantskappe in trans-[PtPh(L),Cl] tydens die verplasingreaksie van Cl- deur I- na verandering van die fosfien-, arsien- en stibienligande (L)

BEIDE (A) KINETIESE EN (B) KRISTALLOGRAFIESE DATA WORD VERSKAF

Α. Kinetiese data (6 Tabelle)

Die reaksies van die vier verskillende komplekse met BuN₄I in chloroform is ondersoek ten einde die relatiewe onderlinge reaktiwiteit te evalueer. Komplese 1 en 2 is net by 40 °C bestudeer terwyl 3 en 4 by 10, 25 en 40°C ondersoek is ten einde die aktiveringsparameters te bepaal.

Die data van elke kompleks word individueel aangegee met konsentrasies in mmol dm³ (mM) en waargenome tempokonstantes in s⁻¹. Die reaksies is in alle gevalle in gedroogde chloroform bestudeer met [Pt]= 0.25 mM, behalwe in die geval van trans-[PtPh(PPh₂Fc)₂Cl] waar die finale [Pt]= 2.5 mM gebruik is aangesien dit mbv ³¹P KMR bestudeer moes word. Alle reaksies het addisioneel-bygevoegde [Cl]= 2.5 mM bevat, behalwe vir trans-[PtPh(PPh_3)2Cl] en trans-[PtPh(PPh_2Fc)2Cl] wat geen bygevoegde chloried bevat het nie. Die finale jodiedkonsentrasies is tussen die grense 2.5 - 150 mM gewissel, dws onder pseudo eersteorde kondisies, met 'n ten minste 10x oormaat relatief tot die [Pt].

[1]	PPh ₃	PPh ₂ Fc	AsPh ₃	SbPh ₃
(mM)	10 ⁴ k _{obs} (s ⁻¹)			
2.5	0.429(8)		0.514(2)	528(3)
5	0.476(5)		0.821(2)	602(3)
10	0.567(5)		1.258(4)	739(3)
25	0.690(2)	2.7(4)	2.018(12)	911(5)
52	0.831(4)	2.2(4)	3.21(4)	1047(6)
75	0.942(4)	1.7(3)	3.97(5)	1118(5)
100	1.03(7)	1.5(3)	4.68(8)	1183(6)
150	1.18(15)	1.1(2)	5.66(9)	1271(8)

Bu NI in chloroform at 40 °C.

TABLE S1: Observed pseudo first-order rate constants for trans-[PtPh(L),Cl] and TABLE S2: Equilibrium-, first- and second order rate constants for trans-[PtPh(L) Cl_] and Bu_NI in chloroform at 40 °C.

	PPh ₃	PPh ₂ Fc	AsPh ₃	SbPh ₃
K _{eq} (M ⁻¹)	0.6(1)	0.1(1)	1.2(3)	0.6(1)
10 ³ k ₁₂ (M ⁻¹ s ⁻¹)	0.37(3)	-0.67(14)	11.6(9)	280(30)
10 ³ k ₁₃ (s ⁻¹)	0.066(3)	0.20(2)	1.0(2)	181(4)
10 ⁴ k ₁₃ ' (M ⁻¹ s ⁻¹)	0.053(2)	0.160(16)	0.80(16)	145(3)
k_{32}/k_{31}	0.103(18)	0.5(3)	0.50(13)	0.264(9)

TABLE S3: Observed pseudo first-order rate constants for trans-[PtPh(AsPh.),C]], 3, and trans-[PtClPh(SbPh.),C1], 4, with Bu,NI in chloroform at 10, 25 and 40 °C.

[1]	trans-[PtPh(AsPh ₃) ₂ Cl]		<i>trans</i> -[PtPh(SbPh ₃) ₂ Cl]				
		10 ⁴ k _{obs} (S ⁻¹)			$10^2 k_{obs} (s^{-1})$		
(mM)	8.9 °C	25.0 °C	40.0 °C	10.0 °C	25.0 °C	40.0 °C	
2.5	0.12(3)	0.514(2)	1.426(9)	3.06(2)	5.28(3)	10.41(8)	
5	0.1747(10)	0.821(2)	1.757(9)	3.69(3)	6.02(3)	12.04(9)	
10	0.2702(15)	1.258(4)	3.577(13)	4.27(3)	7.39(3)	14.01(11)	
25	0.4597(9)	2.018(12)	6.98(4)	5.40(4)	9.11(5)	16.5(12)	
52	0.7102(12)	3.21(4)	11.51(10)	6.02(5)	10.47(6)	17.90(14)	
75	0.879(3)	3.97(5)	15.20(14)	6.51(6)	11.18(5)	19.21(17)	
100	0.995(3)	4.68(8)	18.7(2)	6.77(6)	11.83(6)	20.1(2)	
150	1.171(12)	5.66(9)	25.5(3)	7.32(7)	12.71(8)	22.0(2)	

TABLE S4: Equilibrium-, first- and second order rate constants for trans-[PtPh(AsPh₃)₂Cl], **3**, and trans-[PtClPh(SbPh₃)₂C1], **4**, with Bu₄NI in chloroform at 10, 25 and 40 °C.

	<i>trans</i> -[PtPh(AsPh ₃) ₂ Cl]			trans-[PtPh(SbPh ₃) ₂ Cl]		
	8.9 °C	25.0 °C	40.0 °C	10.0 °C	25.0 °C	40.0 °C
K _{eq} (M ⁻¹)	1.2(3)	1.2(3)	1.2(3)	0.6(1)	0.6(1)	0.6(1)
10 ³ k ₁₂ (M ⁻¹ s ⁻¹)	0.17(5)	1.6(3)	11.6(9)	75(9)	143(10)	280(30)
10 ³ k ₁₃ (s ⁻¹)	0.121(13)	0.41(6)	1.0(2)	64.6(12)	110.5(14)	181(4)
10 ⁴ k ₁₃ ' (M ⁻¹ s ⁻¹)	0.097(10)	0.33(5)	0.80(16)	51.7(10)	88.4(11)	145(3)
k_{32}/k_{31}	0.049(6)	0.063(12)	0.50(13)	0.207(6)	0.199(4)	0.264(9)

TABLE S5: Activation parameters determined by the exponential form of the Eyring equation for *trans*-[PtPh(AsPh₃)₂Cl], **3**, and *trans*-[PtPh(SbPh₃)₂Cl], **4**, with Bu₄NI in chloroform.

	k	12	<i>k</i> ₁₃		
Complex	ΔH≠	ΔS≠	ΔH≠	ΔS≠	
	(kJ mol ⁻¹)	(J K ⁻¹ mol ⁻¹)	(kJ mol ⁻¹)	(J K ⁻¹ mol ⁻¹)	
<i>trans-</i> [PtPh(AsPh ₃) ₂ Cl]	99.8(6)	36(2)	45(2)	-181(7)	
trans-[PtPh(SbPh ₃) ₂ Cl]	31(1)	-157(4)	22.91(11)	-207.3(4)	

TABLE S6: Activation parameters determined by the linear form of the Eyring equation for *trans*-[PtPh(AsPh₃)₂Cl], **3**, and *trans*-[PtPh(SbPh₃)₂Cl], **4**, with Bu_4NI in chloroform.

	k ₁₂		k ₁₃	
Complex	ΔH≠	ΔS≠	ΔH≠	ΔS≠
	(kJ mol ⁻¹)	(J K ⁻¹ mol ⁻¹)	(kJ mol⁻¹)	(J K ⁻¹ mol ⁻¹)
<i>trans-</i> [PtPh(AsPh ₃) ₂ Cl]	95.9(3)	26.6(1)	48(32)	-172(9)
trans-[PtPh(SbPh ₃) ₂ Cl]	30(1)	-160(30)	22.6(6)	-208(204)