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Wiskundige modellering van die prestasiekoëffisiënt van ’n direkte-uitbreiding groot
maatmelkverkoeler op ’n plaas: ’n Veelvoudige lineêre regressie-benadering: In hierdie 
studie word ’n metode vir die voorspelling van die prestasiekoëffisiënt (COP) van ’n 
direkte uitbreiding op n grootmaatmelkverkoeler (DXBMC) aangebied in die vorm van ’n 
meervoudige lineêre regressie (MLR) model. Die eksperimentele data wat gebruik is om die 
model te bou en te ontwikkel, is versamel vanaf ’n DXBMC van 21 m3 met behulp van ’n 
dataverwerwingstelsel wat temperatuursensors, ’n omgewingstemperatuur- en relatiewe 
humiditeitsensor en ’n kragmeter bevat. Die studie het aan die lig gebring dat die COP van 
’n DXBMC op die plaas met hoë akkuraatheid voorspel kan word. Daar is gevind dat die R2-
waardes vir die voorspelling van die COP 0.957 is. Verder is die ontwikkelde model statisties 
beduidend, met n p-waarde van 1,31 × 10-120. Die model kan die COP met ’n relatiewe 
hoë akkuraatheid voorspel, soos aangedui deur ’n lae wortel gemiddelde kwadraatfout 
(RMSE) wat 0,0406 is met ’n standaardfout vir die gebruik van die model om die COP van 
0,0392 te voorspel, wat aandui die eksperimentele data lewer ’n goeie pasvorm. Die ReliefF-
algoritme en 2D-simulasiegrafieke het aangedui dat energieverbruik en volume melk 
primêr bydra tot die COP. Daarenteen was melktemperatuur, omgewingstemperatuur en 
relatiewe humiditeit sekondêre bygedraende faktore. Die studie het bevind dat elektriese 
energie die belangrikste faktor is wat die COP van die DXBMC op n plaas beïnvloed. Dus 
kan energie-doeltreffendheidsinisiatiewe in melkboerderye help om die energieverbruik te 
optimaliseer.

Sleutelwoorde: Direkte uitbreiding van grootmaatmelkkoeler, regressie, prestasiekoëffi
siënt; verkoeling van melk; modellering
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In this study, a method for predicting the coefficient of performance (COP) of an on farm-
direct expansion bulk milk cooler (DXBMC) is presented in the form of a multiple linear 
regression (MLR) model. The experimental data used to build and develop the model was 
collected from a 21 m3 DXBMC utilising a data acquisition system comprising temperature 
sensors, an ambient temperature and relative humidity sensor, and a power meter. The 
study revealed that the COP of an on-farm DXBMC could be predicted using an MLR 
model with high accuracy. The R2 value for predicting the COP was found to be 0.957. 
Furthermore, the developed model is statistically significant as was deduced by significance 
p = 1.31×10-120. The model can predict the COP with relatively high precision as indicated by 
a low root mean squared error (RMSE) = 0.0406 with a standard error for using the model to 
predict the COP of 0.0392 implying the experimental data produces a good fit. The ReliefF 
algorithm and 2D simulation plots indicated that energy consumption and volume of milk 
were primary contributors to the COP. In contrast, milk temperature, ambient temperature 
and relative humidity were secondary contributors. The study found that electrical energy is 
the most critical factor influencing the COP of the on-farm DXBMC. Thus, energy efficiency 
initiatives in dairy farms would help to optimise energy consumption.

Keywords: direct expansion bulk milk cooler, regression, coefficient of performance, dairy 
milk cooling, modelling 
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and using water-cooled condensers instead of air-cooled 
condensers (Sapali et al., 2014). Various studies on the 
COP of refrigeration equipment can be found in literature, 
ranging from domestic, industrial and transportation. 
Tian et al. (2019) developed a method for predicting the 
COP of an on-site screw chiller. Their study used artificial 
neural network (ANN) as the modelling technique. 
Opalic (2020) also developed an ANN modelling of CO2 
refrigerant cooling system COP for a warehouse. Zhu et 
al. (2019) Zhu et al. (2013) propose a generic simulation 
model for performance and control analysis. Laidi and 
Hanini (2013) developed an optimal solar COP prediction 
of solar-assisted adsorption refrigeration system through 
ANN modelling; Artuso et al. (2020) modelled a new 
cooling performance unit for refrigerated transportation. 
Nikbakhti et al. (2020) developed a lumped-parameter 
thermodynamic model for performance analysis of 
integrated adsorption and absorption refrigeration system. 
Lee and Lu (2010) evaluated the performance of vapour-
compression water chillers. Their study focused on using 
empirically-based models achieved using the least-squares 
method. The developed models predicted the energy 
performance of the water chillers. It is worth mentioning 
that the COP performance of a direct expansion bulk milk 
cooler is inadequately reported in the literature. This study 
seeks to predict the COP performance of a DXBMC through 
multiple linear regression modelling techniques. This 
study aims to develop a mathematical model that captures 
the performance of an on-farm direct expansion DXBMC 
in terms of its COP. The developed model for the on-farm 
DXBMC helps visualise the impact of the milk loading and 
environmental conditions on the COP. Through the ReliefF 
algorithm, the influence and contribution of each predictor 
variable to the COP were derived. Furthermore, each 
predictor’s effects on the COP were deduced through the 
2D simulation plots that allow varying single predictors, 
while the others are held constant.

Materials and methods 
System description
The study took place on an existing dairy farm in the Eastern 
Cape Province of South Africa with a 21 m3 DXBMC and an 
average of 500 cows-in-milking. The farm had its milking 
done twice every day (AM and PM milking). During the 
monitoring period, the milk was collected every day, 
and after every two days in some instances. Performance 
monitoring was from April 2016 to March 2017. 

The DXBMC operated with a total of four separate 
condensing units, and all used the same evaporator. The 
evaporator forms the underside of the inner tank of the 
DXBMC, and an insulation layer separated the internal 
tank and the outer tank. Table I below summarises the 
specifications of the system on the farm.

Introduction
The number of milk producers in South Africa decreased 
by 57% between January 2011 and January 2020. However, 
between 2011–2019, milk production and milk production 
per producer increased by 26% and 291%. In 2019, the 
Western Cape Province, Eastern Cape and KwaZulu-Natal 
contributed about 87.5% of the total milk produced in the 
country. The number of cows in milking varies widely 
among producers with the Eastern Cape Province having 
the highest average of 814 cows per producer (International 
Farm Comparison Network, 2019). Interestingly, 98% of 
the raw milk in South Africa has to be delivered for further 
processing, hence handling of milk at the dairy farm is 
crucial to avoid contamination. In a typical processing 
plant, milk undergoes a series of processing activities 
before being rendered safe for human consumption. These 
entail handling raw milk, clarification, homogenisation, 
pasteurisation and chilling (Modi and Prajapat, 2014). 
This suggests that the milk quality on the dairy farm from 
milking to storage is of paramount importance. Dairy 
farming is an energy-intensive enterprise and involves 
various processes: ventilation, lighting, water heating, milk 
cooling, transportation and irrigation where a considerable 
amount of energy is required. Amongst these processes, 
milk cooling constitutes approximately 20–36% of the total 
energy consumption (Peterson, 2008; Upton et al., 2013). 
Thus, the cooling system’s efficient operation is crucial for 
any dairy farm as it ensures acceptable product quality. 

Specifically, milk is supposed to be cooled rapidly from 35 
°C–37 °C to a storage temperature of 4 °C to stop microbial 
activity (Lewis and Heppell, 2000; Holm et al., 2004; 
Upton et al., 2010). The cooling can be done directly or 
through pre-cooling (Saravacos and Kostaropoulos, 2002; 
Mhundwa, 2017). Subsequently, the milk is stored in the 
DXBMC and in most dairy farms storage usually takes at 
most two days before it can be collected by refrigerated 
tankers, which serve to maintain the milk at 4 °C. The 
performance of a refrigeration system is determined by 
the coefficient of performance (COP); it signifies the heat 
removed from the milk per unit of energy used by the 
BMC to remove the heat. The COP strongly depends on 
outside temperature and required milk temperature. On a 
dairy farm, higher COPs equate to higher efficiency, lower 
electrical energy consumption and thus lower operating 
costs for the farmer. The COP of a DXBMC can range from 
2.6 to 5 (Mhundwa et al., 2017). Like any other system that 
operates on the vapour compression refrigeration cycle 
(VCRC), it is governed by its design and the operational 
conditions and location. However, to achieve an optimum 
COP for the DXBMC, professional installation of the 
system is essential and the day to day operation of the 
DXBMC. The COP of the DXBMC can be improved by 
pre-cooling and waste heat recovery from the condenser 
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at a storage temperature of 4 °C. The schematic layout of 
the experiment and how the DAS was connected is shown 
in Figure 1.

Calculations and theory
The calculated electrical energy consumption (Ecal) for the 
entire duration of the cooling cycle was given by equation 
5.1:

	   Ecal = P x t		  (1)

Where:

P = power consumption of the DXBMC (kW)

t = time taken by the DXBMC to complete a cooling cycle 
(hours)

The total thermal energy removed from the milk during the 
cooling was given by equation 2 

		  mCpm(Tmi – Tmf)	 Qm = ______________	 (2)
		  3600

Where:

Qm = thermal energy removed from the milk during cooling 
(kWh)

m = mass of milk cooled during a cooling cycle (kgs)

Cpm = Specific heat capacity of milk (3.93kJ/kg.K)

Tmi = average initial temperature of milk (°C)

Tmf = average final temperature of milk (°C)

Description	 Specifications	 Quantity
DXBMC	 21 m3, cylindrical, direct expansion, 	 1
	 with horizontal agitators
Milking machine	 Rotary type, 60 cows per cycle	 1
Condensing units	 Copeland Scroll compressors	 4

Table I: System description and specifications

Equipment Description	 Quantity
Landis and Gyr E650 power meter	 1
HOBO ProV2 relative humidity and ambient temperature sensor	 1
HOBO TMC6-HE temperature sensors	 2
UX120-006M 4-channel analog data logger 	 2

Table II: List of equipment used for the DAS

Figure 1: Schematic layout for the experiment 

a) condensing unit, b) room-temperature sensor, c) bulk milk cooler, d) milk temperature sensor, e) power meter, f) four channel 
data logger, g) relative humidity and ambient temperature logger

Table II shows the sensors, meter, and logger used for the 
DAS (Data acquisition system) designed, built and installed 
at the dairy farm.

The HOBO TMC6-HE temperature sensor was installed 
on the milk delivery pipe and inside the DXBMC’s room. 
The sensors were connected to the UX120-006M 4-channel 
analog data logger configured to log at five-minute intervals. 
The Landis and Gyr E650 meter with an inbuilt logging 
capability captured the power consumption (active power, 
apparent power and reactive power) of the DXBMC at the 
same five-minute intervals during the cooling of milk from 
the initial temperature to the final required temperature 
of 4 °C (cooling cycle). A relative humidity and ambient 
temperature HOBO Pro V2 sensor with an inherent logging 
capability recorded the farm’s ambient temperature and 
relative humidity. The volume of milk produced was 
obtained from the on-farm records. According to the raw 
milk standards, the milk’s final temperature was assumed 
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The calculated COP (COPcal) is the ratio of the thermal 
energy removed (Qm) from the milk during the cooling 
process to the input electrical energy (E). The calculated 
COP was given by equation 3.

		  Qm	 COPcal = ____	 (3)
		  E

Model formulation 
This study used simple single output and multiple inputs 
multi-linear regression model (MLRM) with predictors 
being: the volume of milk, the temperature of milk, 
electrical energy, room temperature, ambient temperature 
and relative humidity. An MLR model is a mathematical 
equation which correlates the desired output to input 
parameters. It has a forcing constant and scaling constants 
of each of the input parameters and were determined by the 
ordinary least square method. MLR model is a simple form 
of an artificial neural network model. The MLR model’s 
advantage is that it can easily predict each input parameter’s 
variation with the desired output (Mhundwa and Simon, 
2020). Variable selection was based on a correlation matrix 
for the predictors and the output. Equation 4 indicates the 
model. 

	 COPmod = a + bE + dVm + eTaRH + lTm	 (4)

Where:

α = Forcing constant for COP model

β = Scaling constant for energy consumption (kWh)

δ = Scaling constant for the volume of milk (Ltrs)

ε = Scaling constant for the product of ambient temperature 
and relative humidity (°C %)

λ = Scaling constant for milk temperature (°C)

Tm – Temperature of the raw milk (°C)

Ta = Ambient temperature (°C)

RH = Relative humidity (%)

Vm = Volume of milk produced (Ltrs)

E = Energy consumption (kWh)

Predictor importance
The multi-linear regression model predictors were ranked 
by the importance of their weight contribution to the 
output (Millilan and Johnson, 1982; Robnik-Šikonja and 
Kononenko, 2003). The ranking of predictors was done 
using the ReliefF Algorithm in the Matlab Statistical toolbox 

(Palm, 2010) to differentiate the predictors’ magnitude 
and importance concerning the COP for the DXBMC. The 
ReliefF algorithm determines to which predictors the COP 
is most sensitive. 

Model testing and validation
The developed model fitness to the experimental data was 
evaluated using the determination coefficient (R2). The 
model development and validation used 70% and 30% 
of the dataset, respectively. The mean square prediction 
error (MSPE), root mean square error (RMSE) and relative 
prediction error (RPE) formed the basis of evaluating the 
precision, accuracy and bias of the models as highlighted 
by Bibby and Toutenburg (1977) and Rook et al. (1990). 

Results and discussion
Data was collected for the two distinct milking periods 
(that is the AM milking and the PM milking periods) for 
twelve months and were used to carry out the system’s 
overall daily performance evaluation. Table III presents a 
summary of the data collected for this study 

As can be observed from the table, the DXBMC’s energy 
consumption varied between 68.50 kWh and 184.49 kWh. 
On average, the COP for DXBMC was 2.19. Notably, low 
milk volumes had low COPs for the DXBMC despite the 
low room temperatures recorded. Generally, the AM 
milking periods had high milk volume as well as higher 
COP values. Slight variation in the milk temperature was 
identified as influenced by the room temperature as the 
milk delivery pipelines were not insulated; however, no 
significant difference was observed. It can be observed that 
there was an increase in the COP with an increase in the 
milk volume, and suggests the improved performance of 
the DXBMC at high milk volumes. When analysed together, 
energy, the volume of milk, and milk temperature were 
significantly associated with the COP of the DXBMC at P 
< 0.001. The other variables, ambient temperature, relative 
humidity and room temperature, were not significantly 
associated with the COP. Henceforth, the volume of milk 
and energy formed part of the final model. However, since 
a refrigeration system’s performance is affected by ambient 
conditions and due to the close association of ambient 
temperature and room temperature (Mhundwa et al., 
2018), a product of ambient temperature and RH was also 
included in the model.

Using the 70:30 (model development and validation) 
criteria, the MLR model was developed to determine the 
effects of various predictors to the COP of the DXBMC. 

Table III: Summary of the data collected for this study
	E  (kWh)	 Vm (Ltrs)	 Ta (°C)	R .H. (%)	 Tm (°C)	 Tr (°C)	 COP
Minimum	 68.50	 5,034.10	 2.12	 13.22	 29.23	 5.63	 1.78
Average	 110.84	 7,371.16	 17.58	 68.35	 33.19	 19.26	 2.19
Maximum	 184.49	 10,199	 35.27	 100	 40.33	 34.37	 2.75
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Table IV presents the coefficients of the scaling parameters. 
The scaling values predicted that electrical energy 
consumption of the DXBMC would increase if there were 
an increase in Vm delivered to the DXBMC, and Tm.

If there were an increase in E, Ta and Tr the COP of the 
system would decrease. An increase in RH and Ta led to a 
slight reduction in the COP even though this phenomenon 
could not occur simultaneously. It is worthwhile to mention 
that, Ta, and RH displayed low levels of significance in 
predicting the COP, as highlighted by the p values greater 
than 0.05 (Table IV). As observed in Table IV, the COP of 
the DXBMC reduced by 0.01796 for every kWh increase in 
energy consumption. With an increase in milk volume by 
a litre, the COP of the DXBMC would increase by 0.0003. 
Generally, the ambient conditions surrounding the DXBMC 
would likely reduce the COP for each degree Celsius 
increase in ambient temperature and room temperature. 
The p values for Energy, Vm and Tm are much smaller. 

A 2D slice plot in Figure 3 presents each predictor’s 
variation while the rest are kept constant. The plot visually 
deduces the overall effect of each predictor to the desired 
response (COP). Each predictor section’s solid middle line 
indicates the change in the output based on the predictor 
variable if all other predictors remain constant. The slice 
plot also shows the 95% lower and upper confidence bounds 
(dashed curves) for the predicted COP. We can deduce 
from this plot that an increase in energy consumption by a 
unit kWh will likely lead to a reduced COP by 0.9 %, while 
an increase of milk volume by one litre will increase the 
COP by 0.0134 %. It is worth noting this; the increase of 
other predictors did not show much change in the COP. 
Figure 2 illustrates the calculated COP and modelled COP.

As shown in Figure 3, the modelled COP closely mimic the 
calculated COP with an adjusted R2 = 0.957. This indicates 
that 95.7% of the data’s variation is explained by the 
MLR model using the predictors. This suggests a strong 
relationship between the predictors and the targeted COP 
at 95% confidence level. The difference between the means 
of COPcal and COPmod were statistically insignificant 
with a p value = 0.992. Furthermore, the developed model 
is statistically significant as was deduced by significance p 
= 1.31×10-120. The model can predict the COP with relatively 
high precision as indicated by a low RMSE = 0.0406 with 
a standard error for using the model to predict the COP 
of 0.0392, thus implying the experimental data produces a 
good fit. Figure 4 shows the residual plot for the modelled 
COP. 

The residual plot shows no distinct pattern of the residuals 
indicating the residuals’ randomness, with most of them 
being close to the zero residual. Figure 5 illustrates the 
effects of each predictor on the COP of the DXBMC. 

Based on Figure 5, this plot shows that energy consumption 
by the DXBMC has a negative effect on the performance 
of the DXBMC. An increase in energy consumption by 
62.85% (68.503 kWh to 184.49 kWh) will reduce the COP 
of the DXBMC by 2.08. On the other hand, the increase 
of the milk volume by 50.64% (5 034 to 10 199) will 
likely increase the COP of the system by 1.496. Also, an 
increase in the milk temperature by 27.52% (29.23 °C to 
40.33 °C) would also increase the COP of the DXBMC by 
0.78. Ambient temperature and relative humidity had an 
insignificant effect on the COP of the system. The effects of 
the environment on the DXBMC’s COP is attributed to its 
location at the farm. In this case, the DXBMC was housed 

Figure 2: 2D slice plot of predictors and COP for the on-farm DXBMC

Table IV: Input parameters and scaling coefficients for the COP of the DXBMC 

Predictor	 Symbol	 Scaling Notation	 Scaling Constant	 P-value	 Output
Energy	 E	 b	 -0.01796	 2.71×10-99

Volume of milk	 Vm	 d	 0.0003	 1.16×10-112

Ambient Temperature and Relative Humidity	 TaRH	 e	 -3.39×10-6	 0.714	 COP
Milk Temperature	 Tm	  l	 0.064	 8.82×10-49

Constant	 	 a	 -0.0165	 0.867
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Figure 3: Calculated COP and modelled COP for an on-farm DXBMC

Figure 4: Residual and Modelled COP for the on-farm DXBMC
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Figure 5: Effects of each predictor to the COP of the on-farm DXBMC

Figure 6: Comparison of the actual COP and predicted COP.
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such that there is minimal interaction with the external 
conditions.

Model validation 
Model validation was done using 30% of the data obtained 
from the same DAS and the similar techniques used for 
the analysis. The model was used for forecasting with the 
appropriate predictors presented in the preceding section. 
The predictions of the model developed were subsequently 
compared to the calculated COP of the DXBMC. The RPE 
was used to evaluate the developed model’s suitability 
as proposed by Fuentes-Pila et al. (1996). In this light, 
the model had RPE and RMSE of 2.735 % and 0.082, 
respectively. This suggests that the MLR model indicates 
an acceptable prediction precision since the RPE values 
ranged from 10% to 20% (Fuentes-Pila et al., 1996). Figure 
6 illustrates the comparison of the Actual COP and those 
predicted by the MLR.

As shown in Figure 6, the predicted COP closely mimic 
the actual COP with R2 value of 0.956. The high R2 value 
suggests that the developed model could be used on similar 
direct expansion DXBMC systems to predict the COP. 

Ranking of predictors by weight of 
importance 
The ReliefF Algorithm in the Matlab Statistical toolbox was 
used to rank predictors (Palm, 2010; Mhundwa et al., 2017). 
The algorithm differentiates through the computation of 
ranks and weights of the predictors, the magnitude and 

direction between primary and secondary contributors 
to the desired output is a critical parameter that it uses. 
The primary contributors will have a positive magnitude 
while the secondary will have a negative magnitude and 
ranging from -1 to 1 with large positive weights assigned to 
essential attributes, as indicated in Figure 7.

It can be deduced that energy, and volume of milk were 
primary contributors to the COP while milk temperature 
and the product of ambient temperature and RH were 
secondary contributors. 

Conclusion
An on-farm DXBMC was monitored during April 2016 
– March 2017 and its COP was evaluated using MLR 
modelling technique. Based on our analysis, the noticeable 
findings from this study are as follows:

i.	 The COP of an on-farm DXBMC can be predicted 
with high accuracy using an MLR model with energy, 
the volume of milk, the temperature of milk, relative 
humidity and ambient temperature.

ii.	 Energy consumption had the most significant influence 
on the COP of the DXBMC followed by the volume of 
milk, the temperature of milk and relative humidity 
and ambient temperature in that order. 

iii.	 Energy consumption and the volume of milk are primary 
contributors to the COP while milk temperature and the 
product of ambient temperature and relative humidity 
were secondary, due to the location of the DXBMC. 

	  

Figure 7: Predictor ranking according to importance
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