About the Author(s)
F.H. Peens
Department of Chemistry, University of the Free State, South Africa
E.H.G. Langner
Department of Chemistry, University of the Free State, South Africa
Citation
Peens, F.H. & Langner, E.H.G., 2016, ‘Elektrochemiese en adsorpsiestudies van die metaalorganiese netwerk, NH2-MIL-53(Al)’, Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 35(1), a1422. http://dx.doi.org/10.4102/satnt.v35i1.1422
Note: A selection of conference proceedings: Student Symposium in Science, 29–30 October 2015, University of the Free State, South Africa. Organising committee: Mr Rudi Pretorius and Ms Andrea Lombard (Department of Geography, University of South Africa); Dr Hertzog Bisset (South African Nuclear Energy Corporation (NECSA); Dr Ernie Langner and Prof Jeanet Conradie (Department of Chemistry, University of the Free State).
|
|
Referaatopsomming
|
Elektrochemiese en adsorpsiestudies van die metaalorganiese netwerk, NH2-MIL-53(Al)
|
F.H. Peens, E.H.G. Langner
Copyright: © 2016. The Author(s). Licensee: AOSIS.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
|
Abstract
Electrochemical and Adsorption Studies of the Metal Organic Framework, NH2-MIL-53(Al). NH2-MIL-53(Al) is an amino-functionalised derivative of the metal organic framework MIL-53(Al). When successfully synthesised, it has the ability to be functionalised with metal complexes. A new solvo-intrusion method was used to study the amidation with butyric acid and ferrocenecarboxylic acid.
NH2-MIL-53(Al) is ’n amiengefunksionaliseerde derivaat van die mikroporeuse metaalorganiese netwerk, MIL-53(Al) (Ahnfeldt et al. 2009). ’n Netwerk van 1-dimensionele diamantvormige kanale (~10 Å in deursnee) word gevorm deur aluminium- (III) oktahedrale hoekstene deur middel van 2-aminotereftaalsuurligande onderling te verbind. Aluminium (III), afwisselend gekoördineer met suurstof, vorm liniêre kettings op die hoeke van die diamantvormige kanale. Die 2-aminotereftaalsuurligande vorm dus die vier sye van die kanale. Vanweë sy organiese verbindingsligande is hierdie netwerkstruktuur besonder buigsaam afhangend van die temperatuur en die aard van die geadsorbeerde molekules. Ná ’n solvotermiese hoëdruk-skoonmaakproses is die gevormde NH2-MIL-53(Al) termies hoogs stabiel (–400 °C) en ook omkeerbaar higroskopies.
NH2-MIL-53(Al) is sonder enige geadsorbeerde spesies ’n goeie heterogene katalis vir die Knoevenagel-kondensasiereaksie (Gascon et al. 2009). Palladiumnanodeeltjies in NH2-MIL-53(Al) het tydens die Suzuki-Miyaura-kruiskoppelingreaksie goeie katalitiese aktiwiteit getoon (Huang et al. 2011). Ongefunksionaliseerde MIL-53(Al) kan gesublimeerde ferroseen adsorbeer (Meilikhov, Yusenko & Fischer 2009a) en is ook al gefunksionaliseer met 1-1’ferroseendiildimetielsilaan om as redokskatalis vir benseenoksidasie op te tree (Meilikhov, Yusenko & Fischer 2009b). Ons studie is egter daarop gemik om die chemiese adsorpsie van karboksielsure en die proses daarvan in NH2-MIL-53(Al) te verbeter.
In hierdie studie is ’n nuwe solvo-intrusiemetode ontwerp om die adsorpsie van bottersuur en ferroseenkarboksielsuur in NH2-MIL-53(Al) te bestudeer. Dit is ’n baie belangrike konsep omdat die netwerkkanale slegs molekule kleiner as 13.04 Å kan deurlaat (Horcajada et al. 2008). ’n Vergelykende tydstudie is gedoen om die minimum tyd te bepaal wat die hoogste lading van beide die bogenoemde molekules gee. Die hoeveelheid lading is bepaal deur ‘n termogravimetriese analise (TGA) en kernmagnetiese resonansspektroskopie (KMR). Postsintetiese, direkte amidasie van NH2-MIL-53(Al) is met bottersuur en ferroseenkarboksielsuur bereik. Hierna is die elektriese geleidingseienskappe van ferroseenkarboksielsuur in NH2-MIL-53(Al) bepaal deur ’n nuut ontwerpte vastetoestand- sikliese voltametriemetode.
Literatuurverwysings
Ahnfeldt, T., Gunzelmann, D., Loiseau, T., Hirsemann, D., Senker, J., Férey, G. & Stock, N., 2009, ‘Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology’, Inorganic Chemistry 48(7), 3057–3064. http://dx.doi.org/10.1021/ic8023265
Gascon, J., Aktay, U., Hernandez-Alonso, M.D., Van Klink, G.P.M. & Kapteijn, F., 2009, ‘Amino-based metal-organic frameworks as stable, highly active basic catalysts’, Journal of Catalysis 261(1), 75–87. http://dx.doi.org/10.1016/j.jcat.2008.11.010
Huang, Y., Zheng, Z., Liu, T., Lu, J., Lin, Z., Li, H. & Cao, R., 2011, ‘Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki–Miyaura cross-coupling reaction’, Catalysis Communications 14(1), 27–31. http://dx.doi.org/10.1016/j.catcom.2011.07.004
Meilikhov, M., Yusenko, K. & Fischer, R.A., 2009a, ‘The adsorbate structure of ferrocene inside [Al (OH)(bdc)] x (MIL-53): a powder X-ray diffraction study’, Dalton Transactions (4), 600–602. http://dx.doi.org/10.1039/B820882B
Meilikhov, M., Yusenko, K. & Fischer, R.A., 2009b, ‘Turning MIL-53 (Al) redox-active by functionalization of the bridging OH-group with 1, 1′-ferrocenediyl-dimethylsilane’, Journal of American Chemical Society 131(28), 9644–9645. http://dx.doi.org/10.1021/ja903918s
Horcajada, P., Serre, C., Maurin, G., Ramsahye, N.A. et al., 2008, ‘Flexible porous metal-organic frameworks for a controlled drug delivery’, Journal of American Chemical Society 130(21), 6774–6780. http://dx.doi.org/10.1021/ja710973k
|
|